Overview: Treatment of TB

- Principles and goals of treatment
- Current drugs, recommended regimens, and duration of TB treatment
- Adverse drug reactions and monitoring
- Management of treatment failure
- End of treatment

Natural History of TB (pre-rx era)

Caution: not stable “cure”

- Cure 27%
- Chronic spreader 18%
- Death 55%
Treatment Goals

Microbiological goals of anti-TB chemotherapy

- Kill tubercle bacilli rapidly (early bactericidal effect)
- Eliminate persistent bacilli to achieve durable cure, i.e. prevent relapse (sterilizing effect)
- Prevent the emergence of drug resistance

General Principles of Therapy

- Always treat with a multiple-drug regimen
- Never add a single drug to a failing regimen
- Isoniazid, rifampin, and pyrazinamide are the basis of modern short-course chemotherapy
- Duration of treatment depends on the drugs used (the weaker the regimen, the longer the treatment)

Case 1

66 year old female from Laos seen after immigration, found to be PPD+ (13mm)

- CXR report: Left apical nodular densities consistent w/ prior granulomatous disease, pleural thickening
- No symptoms, otherwise healthy
- PMD treats with INH for LTBI x9 months

- Patient returns 1 year later with 2 months of cough, significant weight loss, and CXR reveals LUL infiltrate with small cavitory lesion
Drug resistance is conferred by genetic mutations of *M. tb*.

- INH = 1 in 10^6
- RIF = 1 in 10^8
- EMB = 1 in 10^6
- Strep = 1 in 10^6
- INH + RIF = 1 in 10^{14}

Frequency of Random Naturally Occurring Resistance Mutations

Effect of Treatment on Bacillary Population

- **Mixed population (susceptible and resistant)**
- **INH resistant bacilli**

Development of Drug Resistance

Multiple Drugs vs. Monotherapy

1. INH resistant
2. R = RIF resistant, P = PZA resistant, E = EMB resistant
General Principles of Therapy

- Always treat with a multiple-drug regimen
- Never add a single drug to a failing regimen
- Isoniazid, rifampin, and pyrazinamide are the basis of modern short-course chemotherapy
- Duration of treatment depends on the drugs used (the weaker the regimen, the longer the treatment)

Development of Drug Resistance

Further acquired resistance after single drug added

Drug Resistant Mutants Selected by:

- Non-adherence
- Malabsorption
- Inadequate drug regimen

Remember: The higher the burden of disease, the greater the number of wild resistant mutants.

Minimize Breaks in treatment, especially in the first 2 months of treatment.
Treatment of TB
Organization and Supervision

- Role of the health department
- Patient-centered care
- Case management with DOT is the preferred treatment strategy (2016 ATS/CDC/IDSA guidelines)

Outcomes of DOT studies 1966-1996

<table>
<thead>
<tr>
<th>Treatment Method</th>
<th>% of Patients Completing Therapy for Pulmonary Tuberculosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced DOT (n=12)</td>
<td>91.0</td>
</tr>
<tr>
<td>DOT (n=2)</td>
<td>85.3</td>
</tr>
<tr>
<td>Modified DOT (n=2)</td>
<td>76.6</td>
</tr>
<tr>
<td>Non-supervised Therapy (n=2)</td>
<td>61.4</td>
</tr>
</tbody>
</table>

Treatment of TB
Provider Responsibility

“...any public health program or private provider undertaking to treat a patient with TB is assuming a public health function that includes not only prescribing an appropriate regimen but also ensuring adherence to the regimen until treatment is completed.”

ATS/CDC/IDSA: AJRCCM 2003

Ensuring Completion of Therapy:
Patient-centered DOT

Patient adherence
- Single most important factor in treatment failure
- Patient-centered DOT is the international standard of care

Elements of a successful DOT program
- In clinic: supportive, welcoming atmosphere; incentives/enables such as sandwiches, food coupons, bus tokens, fast passes for transit system can help
- In the field: dedicated outreach workers who are “at home” and comfortable in patients’ milieu
First-line TB Drugs and regimens

General Principles of Therapy

- Always treat with a multiple-drug regimen
- Never add a single drug to a failing regimen
- Isoniazid, rifampin, and pyrazinamide are the basis of modern short-course chemotherapy
- Duration of treatment depends on the drugs used (the weaker the regimen, the longer the treatment)

Antibiotic Treatment of TB Began Only 67 Years Ago

Home brew treatment:
- Wolf’s liver boiled in wine
- Flesh of a she-ass with broth
- Smoke of dried cow dung
- Elephant’s blood
- Woman’s milk
- Mice boiled in salt and oil
- The King’s touch
- Bleeding, purging, collapsing lung
- Healing hymns “Rigveda” (India)
Timeline of TB drugs

1854: First sanatorium for “fresh air and rest”
1882: Koch discovers bacillus
1944: Streptomycin
1946: PAS
1952: INH
1961: EMB
1962: PZA
1959: RIF
1955: Cycloserine; (begin triple therapy)
2010

Anti-TB Drugs in the United States

<table>
<thead>
<tr>
<th>First-line Drugs</th>
<th>Second-line Drugs</th>
<th>Third-line Drugs*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoniazid</td>
<td>Linezolid**</td>
<td>(Linezolid**)</td>
</tr>
<tr>
<td>Rifampin</td>
<td>Moxifloxacin*</td>
<td>Bedaquiline</td>
</tr>
<tr>
<td>Rifapentine</td>
<td>Levofloxacin*</td>
<td>Clofazamine</td>
</tr>
<tr>
<td>Rifabutin</td>
<td>Ethionamide</td>
<td>Imipenem/cilastin</td>
</tr>
<tr>
<td>Ethambutol</td>
<td>Cycloserine</td>
<td>Meropenem</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>p-Aminosalicylic acid*</td>
<td>High-dose INH</td>
</tr>
<tr>
<td>Not in U.S.</td>
<td>Gatifloxacin</td>
<td>Delamanid</td>
</tr>
<tr>
<td></td>
<td>Kanamycin</td>
<td>Prothionamide</td>
</tr>
<tr>
<td></td>
<td>Capreomycin</td>
<td>Toxizidone</td>
</tr>
</tbody>
</table>

* Not approved by the United States FDA for use in the treatment of TB
** Linezolid currently classified as 3rd line, but used by many as 2nd line agent

Global TB Drug Pipeline

1. Discovery
2. Preclinical Development
3. Early Stage Development
4. Late Stage Development
5. Clinical Development

*Numbers in parentheses indicate estimated timelines for each stage of development.

www.mtbthings.org
Fixed-Dose Combination Preparations in U.S.

- Rifamate
 - Isoniazid (150 mg) + rifampin (300 mg)
- Rifater
 - Isoniazid (50 mg) + rifampin (120 mg) + pyrazinamide (300 mg)
- Prevents patients from taking some but not all their medications
- May reduce the likelihood of acquiring drug-resistance

Case 2

- 50 year old male from the Philippines recently diagnosed with cough and night sweats x3 weeks
- No prior TB rx, no known contact with active case
- AFB smear+
 - What drugs will you start?

ATS/CDC/IDSA Treatment Guidelines August 2016 (last version 2003!)

Nahid et al, CID 2016
Treatment of TB
Standard Regimen: 6 month short course

<table>
<thead>
<tr>
<th>Drug</th>
<th>Initial Phase</th>
<th>Continuation Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoniazid</td>
<td>0</td>
<td>1, 2, 3, 4, 5, 6</td>
</tr>
<tr>
<td>Rifampin</td>
<td>0</td>
<td>1, 2, 3, 4, 5, 6</td>
</tr>
<tr>
<td>PZA</td>
<td>1</td>
<td>2, 3, 4, 5, 6</td>
</tr>
<tr>
<td>Ethambutol</td>
<td>2</td>
<td>3, 4, 5, 6</td>
</tr>
</tbody>
</table>

But what does each drug contribute to combination?

Case 2
- 50 year old male from the Philippines recently diagnosed with smear+ TB
- Started on INH/RIF/PZA/EMB
- Diffuse rash developed by day 7 and all drugs held. Rash resolves after 3 days
- Start serial rechallenge

Case 2
Which drug would you start first and why?
1. INH because it is the best early bactercidal
2. Rifampin due to its excellent sterilizing
3. PZA to help shorten the course of rx
4. EMB as least likely to cause a rash
Treatment of TB
Action of Anti-TB Agents

Continuous growth
INH (RIF, SM, EMB)
RIF
Spurts of growth
Acid inhibition
PZA
Dormant

High
Low

Speed of bacteria growth

Mitchison DA. Int J Tuberc Lung Dis 1998;2:10

Clinical correlation

- Bactericidal effect: (INH/FQ>>RIF/SM>>E)
 Reverse disease process and stop transmission
- Sterilizing effect: (RIF/PZA)
 Prevent relapse

Activities of Antituberculosis Drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Early bactericidal activity</th>
<th>Preventing drug resistance</th>
<th>Sterilizing activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoniazid</td>
<td>++++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>++</td>
<td>+++</td>
<td>++++</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>+</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Ethambutol</td>
<td>++ - ++++</td>
<td>++</td>
<td>+</td>
</tr>
</tbody>
</table>

Highest +++ High +++ Intermediate ++ Low +
PZA: minimal impact on prevention of drug resistance

- Drug resistance is more likely to occur when the large burden of organisms are rapidly replicating (i.e. cavitation)
- Activity of PZA is limited to special environments (e.g. acidic intra-cellular environment)
- Therefore, PZA as companion drug to protect against development of resistance is limited (avoid use if only two-drug combo)

Recommended Regimens

ATS/CDC/IDSA CID 2016

<table>
<thead>
<tr>
<th>Reg</th>
<th>Initial</th>
<th>Continuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INH/RIF EMB PZA</td>
<td>7 days/wk for 56 doses (8 wk) or 5 days/wk for 40 doses (8 wk)</td>
</tr>
<tr>
<td></td>
<td>INH/RIF</td>
<td>7 days/wk for 126 doses (18 wk) or 5 days/wk for 90 doses (18 wk)</td>
</tr>
</tbody>
</table>

Preferred regimen for patients with newly diagnosed pulmonary TB

5 vs. 7 daily doses:
- When DOT is used, drugs may be given 5 days per wk and the necessary number of doses adjusted accordingly.
- Although no studies compare 5 with 7 daily doses, extensive experience indicates this would be an effective practice. DOT should be used when drugs are administered <7 days per wk.

Intermittent dosing

ATS/CDC/IDSA CID 2016

- Preferred once daily for intensive and continuation phases (Strong recommendation; moderate certainty in the evidence)
- Alternate regimens acceptable in certain program/public health situations (require DOT)
 - Non-HIV, non-cavitary, low-risk for relapse: can consider 3x wk dosing
 - Some public health programs successfully use 2x wk dosing – new guidelines suggest caution – one missed dose is equivalent to 1 per wk dosing (shown inferior)
Relapse risk with intermittent 6 mo. dosing:
200 events in 5,208 patients (32 studies), Chang, AJRCCM 2006

- Daily IP & CP relapse rate 1.9%,
 - 6% for Cav+, C2m+
 - 0.6% for Cav-, C2m-

- Relapse relative risk (RR) with intermittent dose
 - Daily IP, 3x CP: 1.6-fold
 - Daily IP, 2x CP: 2.8-fold
 - Daily IP, 1x CP: 7.1

Recommended Regimens
ATS/CDC/IDSA CID 2016

<table>
<thead>
<tr>
<th>Reg</th>
<th>Initial Drugs</th>
<th>Interval/Dose</th>
<th>Continuation Drugs</th>
<th>Interval/Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>INH RIF EMB PZA</td>
<td>7 days/wk for 56 doses (8 wk) or 5 days/wk for 40 doses (8 wk)</td>
<td>INH RIF</td>
<td>3x wkd for 54 doses (18 wk)</td>
</tr>
<tr>
<td>3</td>
<td>INH RIF EMB PZA</td>
<td>3X wkd for 24 doses (8 wk)</td>
<td>INH RIF</td>
<td>3x wkd for 54 doses (18 wk)</td>
</tr>
<tr>
<td>4</td>
<td>INH RIF EMB PZA</td>
<td>7 days/wk for 14 doses then twice weekly for 12 doses</td>
<td>INH RIF</td>
<td>Twice wkd for 36 doses (18 wk)</td>
</tr>
</tbody>
</table>

General Principles of Therapy

- Always treat with a multiple-drug regimen
- Never add a single drug to a failing regimen
- Isoniazid, rifampin, and pyrazinamide are the basis of modern short-course chemotherapy

- Duration of treatment depends on the drugs used (the weaker the regimen, the longer the treatment)
Treatment of Tuberculosis

Optimum Duration

<table>
<thead>
<tr>
<th>Study</th>
<th>Regimen</th>
<th>Relapse Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTA, 1982</td>
<td>2IR/7IR</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>2IRZS/4IR</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>2IRZE/4IR</td>
<td>2.5</td>
</tr>
<tr>
<td>USPHS 21, 1990</td>
<td>2IR(E)/4IR</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>9IR(E)</td>
<td>2.8</td>
</tr>
<tr>
<td>Denver, 1990</td>
<td>½IRZS/1.5IRZ2S/4IR/4I2R</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Even with standard rx

Treatment of Tuberculosis

Increased Risk of Relapse

- 2-month culture positive status
 - 7 BMRC trials
 - USPHS trial in Poland
 - TBTC Study 22 (2002)
- Cavitary disease
 - TBTC Study 22 (2002)
 - Hong Kong (2004)

TBTC. Lancet 2002;360:528

1004 HIV-negative patients, standard 4 drug initiation; TBTC. Lancet 2002

Continuation of INH/RIF twice wkly

<table>
<thead>
<tr>
<th>Culture + at 2 mos</th>
<th>Cavity</th>
<th>INH/RIF twice wkly</th>
<th>Culture + at 2 mos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>20.8%</td>
<td>4.7%</td>
<td>7.1%</td>
</tr>
<tr>
<td>No</td>
<td>5.9%</td>
<td>1.7%</td>
<td>1.3%</td>
</tr>
</tbody>
</table>

Continuation of INH/RPT once wkly

<table>
<thead>
<tr>
<th>Culture + at 2 mos</th>
<th>Cavity</th>
<th>INH/RPT once wkly</th>
<th>Culture + at 2 mos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>22.2%</td>
<td>9.1%</td>
<td>9.1%</td>
</tr>
<tr>
<td>No</td>
<td>11.8%</td>
<td>1.9%</td>
<td>1.9%</td>
</tr>
</tbody>
</table>
Treatment of Tuberculosis
Extending Therapy – 9 mo total duration

*If cavitary disease and culture (+) at 2 mos.,
extend continuation phase from 4 to 7 mos.

Initial	Continuation Phase*
Isoniazid |
Rifampin |
Pyrazinamide |
Ethambutol |

0 1 2* 3 4 5 6 7 8 9 months

Treatment of TB
Decreasing the Risk of Relapse:

- **Hong Kong silicotuberculosis trial**
 - Extending the continuation phase from 4 to 6 months decreased relapse rate from 22 to 7% (p<0.025)

- **Hong Kong PZA trial**
 - Extending the duration of PZA (2, 4, 6 mo) had no significant effect on relapse
 - IR4S + 2Z: 3% relapsed
 - IR4S + 4Z: 5% relapsed
 - IR4S + 6Z: 3% relapsed

TBTC Study 22: Proportion (%) relapse: Low Ideal Body Weight (IBW) at dx combined with cavitation and/or positive 2-mo culture

Khon, AJRCCM 2006

<table>
<thead>
<tr>
<th>< 90% IBW</th>
<th>Neither</th>
<th>One</th>
<th>Two</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>4/71</td>
<td>16/109</td>
<td>17/51</td>
<td>37/231</td>
</tr>
<tr>
<td></td>
<td>5.6%</td>
<td>15%</td>
<td>33%</td>
<td>16%</td>
</tr>
<tr>
<td>No</td>
<td>3/251</td>
<td>8/212</td>
<td>11/60</td>
<td>22/523</td>
</tr>
<tr>
<td></td>
<td>1.2%</td>
<td>3.8%</td>
<td>18%</td>
<td>4.2%</td>
</tr>
<tr>
<td>Total</td>
<td>7/322</td>
<td>24/321</td>
<td>28/111</td>
<td>59/754</td>
</tr>
<tr>
<td></td>
<td>2.2%</td>
<td>7.5%</td>
<td>25%</td>
<td>7.8%</td>
</tr>
</tbody>
</table>
Treatment of TB
Extending Therapy
- Consider extending the continuation phase with cavitation or delayed culture conversion plus:
 - HIV infection, particularly if advanced
 - Other form of immunosuppression, diabetes, or significant tobacco hx
 - Underweight (< 90% of IBW)
 - High burden: extensive radiographic disease

Case 3
- 40 yo homeless man, originally from Ethiopia, has fever and cough x 4 weeks and lost 15 lb
- AFB smears: 4+
Overview: Treatment of TB

- Principles and goals of treatment
- Current drugs used, recommended regimens, and duration of TB treatment
- Adverse drug reactions and monitoring
- Management of treatment failure
- End of treatment

Adverse Reactions

- Between 8-18% have drug regimens modified
- Most common side effects:
 - Rash
 - Gastrointestinal intolerance
 - Liver toxicity
 - Peripheral neuropathy (INH)
 - Optic neuritis (EMB)—dose and duration dependent
 - Gout, arthropathy (PZA)

Isoniazid (INH)

Adverse Effects

- Asymptomatic transaminitis
 - Up to 5X upper limit normal in 10-20%
- Clinical hepatitis
 - With INH alone approximately 0.6%; 2.7% with RIF
- Peripheral neurotoxicity
 - Less than 0.2% unless predisposing factors
- Central nervous system effects
 - Not well quantified
- Lupus-like reaction
 - Approximately 20% develop positive ANA; Lupus in less than 1%
Rifampin (RIF)
Adverse Effects
- Cutaneous reactions
 - Pruritus with or without rash in up to 6%
- Gastrointestinal reactions
 - Variable incidence but usually mild
- Flu-like syndrome
 - Occurs in 0.4-0.7% receiving 600 mg twice weekly
- Hepatotoxicity
 - Transient asymptomatic hyperbilirubinemia in 0.6%
 - Clinical hepatitis uncommon, usually cholestatic
- Immunological reactions
 - <0.1% develop l pils, anemia, renal failure

Ethambutol (EMB)
Adverse Effects
- Retrobulbar neuritis
 - Less than 1% with dose of 15 mg/kg
 - 18% with more than 30 mg/kg/day
- Peripheral neuritis
 - Rare
- Cutaneous reactions
 - Approximately 0.2-0.7% require discontinuation of drug

Pyrazinamide (PZA)
Adverse Effects
- Hepatotoxicity
 - About 1% develop clinical hepatitis, can be severe
- Gastrointestinal symptoms
 - Mild anorexia and nausea are common
- Non-gouty polyarthritis
 - Up to 40% receiving daily PZA, not serious
- Hyperuricemia
 - Asymptomatic - expected effect
 - Acute gouty arthritis - rare except if pre-existing gout
- Cutaneous reactions
 - Transient morbilliform rash, self-limited
 - Photosensitive dermatitis
GI Intolerance

- Discern between transient vs. persistent
- Transient: pill burden, indigestion – BIW=>TIW=>daily dosing
- Persistent: anorexia, nausea, and fatigue may signify liver toxicity
- If hepatotoxicity suspected, hold meds and obtain liver function tests (LFTs)
- If LFTs are normal, restart meds and reassure

Liver toxicity

- Most feared adverse reaction
- INH, rifampin, and PZA can all cause liver injury
- Warn patients to seek immediate attention if anorexia, nausea, emesis, abdominal discomfort, fatigue, (or jaundice develops – but this is late!)
- 4-5 fold increased risk with hepatitis C
- **Prevention:** avoidance of alcohol and monitoring LFTs if other drugs with potential liver toxicity are used

Drug Induced Liver Injury (DILI)

- Transaminase levels elevated
 - ≥ 3X ULN with symptoms
 - ≥ 5X ULN without symptoms:
- Response to DILI
 - Stop hepatotoxic medications.
 - Evaluate for viral hepatitis, biliary disease, alcohol, other hepatotoxic drugs
 - Consider “liver sparing” regimen if interruption would be detrimental [EMB/FQN/Injectable]

AJRCCM 2006; 174: 935-952
Drug Induced Liver Injury (DILI)

- After ALT <2X ULN: restart RIF ± EMB (or add RIF to liver sparing regimen)
- After 3-7 days: check LFT and restart INH
 - If hepatitis recurs: stop the last drug added
- If RIF and INH tolerated: consider not using PZA
 - Disadvantages: 9 month regimen
 - Continue careful monitoring

AJRCCM 2006; 174: 935-952

Liver Toxicity: Order of Re-challenge
Depends on Circumstances

Patterns of hepatitis

- Hepatocellular (increased transaminases): can be caused by all three 1st line agents
- Cholestasis (high Alk phos and bilirubin) is usually due to rifampin
- INH hepatitis: often age-dependent
- PZA hepatitis: often age & dose-dependent

Case 4

- 58 yo man from India, diabetic. TST negative. He lives with his son, daughter-in-law who is pregnant and 2 yo grandson
- He drinks heavily and has hepatitis C infection.
- Cough x 6 wks, seen by PMD (failed trial abx)
Drug-Induced Peripheral Neurotoxicity

- Drugs: INH, ethionamide, cycloserine, linezolid, (EMB)
 - More common in patients with
 - Diabetes
 - Alcoholism
 - HIV infection
 - Pregnancy
 - Usually symmetrical - tingling, prickling, burning

- Pyridoxine to prevent: 25-50 mg daily (if baseline neuropathy, some experts use 100 mg; caution as B6 alone can cause neuropathy as dose increases)

Monitoring: Adverse Reactions

<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>Drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rash</td>
<td>PZA, INH, RIF, EMB</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>PZA, RIF</td>
</tr>
<tr>
<td>intolerance</td>
<td></td>
</tr>
<tr>
<td>Liver toxicity</td>
<td>PZA, INH, RIF</td>
</tr>
<tr>
<td>Peripheral neuropathy</td>
<td>INH, (EMB)</td>
</tr>
<tr>
<td>Optic neuritis</td>
<td>EMB</td>
</tr>
<tr>
<td>Gout</td>
<td>PZA</td>
</tr>
</tbody>
</table>

- Drugs are listed in order of relative likelihood of causing adverse reaction.
- INH/RIF and RIF/PZA appear to have synergistic effects in causing hepatitis

Case 5
33 y.o. man with LTBI & DM

- TST 16 mm 7 yrs ago
- Developed diabetes mellitus
- Started on INH with 25 mg pyridoxine
- Had a seizure at home after 2 weeks
- PCP thought cause was hypoglycemia
- Repeat seizure 3 weeks later
Case 5
33 y.o. with seizure x2

Case 5
33 y.o. on INH with brain mass
- Seizures controlled with phenytoin
- Tuberculoma removed at craniotomy
- AFB stains negative
- HRZE started post-op
- Are there drug interactions to consider?

Isoniazid
Drug Interactions
- Isoniazid - Relatively potent inhibitor of several cytochrome P450 isozymes, but not CYP3A
- Inhibitory activity of INH increases the serum concentrations of phenytoin (Dilantin ®), carbamazepine (Tegretol ®), and diazepam
- Rifampin has opposite effect and outweighs inhibitory effect of INH
- INH may increase toxicity to acetaminophen, valproate, serotonergic antidepressants, disulfiram, warfarin, and theophylline
Rifamycins
Drug Interactions
- Rifamycins - Induce various isozymes of the cytochrome P450 system resulting in a decrease in serum concentration of many drugs
- Enzyme induction: Rifampin>rifapentine>rifabutin
- Ex. Corticosteroids, oral contraceptives, oral hypoglycemic agents, oral anticoagulants, phenytoin, cimetidine, digitalis, antiretroviral agents, immunosuppressants
- Ask patients to bring in all concurrent medications
- Communicate with the primary care provider

Case 5
33 y.o. on INH tuberculoma
- Anticipated reduction in phenytoin levels discussed with Neurology
- Levetiracetam (Keppra) started
- Phenytoin stopped
- No further seizures during treatment

Case 6
- 30 yo woman moved to US from India 4 yrs ago
- Needs clearance to work in school
- TST 12 mm
- No symptoms
Case 6

→ Now what?

Approach to the Patient: Culture Negative TB

CDC clinical diagnosis criteria (all required)
- Clinical presentation consistent with TB
- Clinical or radiographic response to anti-TB therapy in the absence of another diagnosis
- Positive TB skin test

Provider diagnosis
- Selected cases reported without all 3 criteria above (e.g. TST negative)

*Again, clinical acumen and index of suspicion remain key

Treatment of Culture-negative TB

- **Low suspect**
 - No rx
 - CXR unchanged = TB4
 - INH x 9 mo

- **High suspect**
 - Rx: INH/RIF/E
 - CXR unchanged = TB4 → Treatment done
 - INH/RIF x 2 more mo**

Guidelines, but...
Case 7

- 25 year asymptomatic Chinese woman who came to SF to attend college
- PMH - unremarkable
- Habits - 5 pack-year smoker
- Meds - None
- TST - “positive”
- What would you do next?

Case 7

Three sputum specimens were collected and noted to be AFB smear negative
A CT was performed:
Case 6

- Based on the mass-like lesion on the CT, a bronchoscopy was performed.
- Bronchoalveolar lavage was AFB smear negative, cytology negative
- What would you do now?

She grew *M. tuberculosis* from one of her sputum specimens!

Approach to the Patient:
The Case for Presumptive Treatment

- Earlier treatment may prevent the progression of disease and limit transmission
- Presumptive treatment with standard RIPE x2 mo would fulfill current recommendation for LTBI (if turns out to not be active TB)
- Adverse reaction in <10% of patients without active TB who were presumptively treated
- Use rapid diagnostic tests to assist decision-making

Treatment of Tuberculosis
Special Situations

- Pregnancy
- Liver Disease
- Renal Disease
- HIV/Immunosuppressed
- Pediatrics
- Drug Resistant Disease
- Extrapulmonary

 To be discussed by others
Routine Monitoring and Frequency

<table>
<thead>
<tr>
<th>Signs and symptoms</th>
<th>Monitoring Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sputum conversion</td>
<td>Baseline, monthly till negative</td>
</tr>
<tr>
<td>Weight</td>
<td>Monthly</td>
</tr>
<tr>
<td>LFTs</td>
<td>Baseline, 1 month and prn</td>
</tr>
<tr>
<td>Side effects</td>
<td>Monthly: includes visual acuity and red/green discrimination, GI complaints, check for jaundice</td>
</tr>
<tr>
<td>Adherence and psychosocial issues affecting treatment</td>
<td>Weekly for DOT patients</td>
</tr>
<tr>
<td>MD evaluations</td>
<td>Minimum at baseline, 3 months and end of therapy</td>
</tr>
</tbody>
</table>

Management of Relapse, Treatment Failure

- 90-95% of patients treated for pulmonary TB will have negative sputum cultures by 3 months
- If still culture positive after 3 months of therapy:
 - Re-check drug susceptibility tests
 - Assess adherence
 - Consider malabsorption of drugs

Management of Relapse, Treatment Failure (2)

Treatment failure: Culture positive after 4 months of therapy
- Obtain rapid molecular DST
- If the patient is seriously ill or sputum AFB smear +, an empiric expanded regimen should be started with at least two new drugs
- If the patient is not seriously ill, consider waiting for the results of drug susceptibility testing
- If malabsorption suspected, consider IV therapy (INH, rifampin, moxifloxacin) and check therapeutic drug levels
Case 2 (continued saga)

- 50 year old male from the Philippines recently diagnosed with smear+ TB
- Rash after 7 days INH/RIF/PZA/EMB
- Serial restart (q2-3 days) points to INH as source of rash
 ➤ What would you treat with?

Alternate Regimens

Drug Resistance (or intolerance)

- Without INH
 - 6-9 month regimen of Rif, PZA, and EMB (+/FQ)
 - 9-12 months Rif, EMB, FQ
- Without Rifampin
 - 12-18 month regimen of INH, EMB, and FQ (with PZA x2 mo)
 - 18 month regimen of INH, EMB, PZA
 - If cavitary/ extensive – or to support shorter 12 mo. duration, can add injectable for at least first 2 mo
- Without PZA
 - 9 months of INH/RIF (initial use of EMB while await DST)

Case 2 (continued saga)

- 50 year old male from the Philippines recently diagnosed with smear+ TB
- Rash after 7 days INH/RIF/PZA/EMB
- Serial restart points to INH as source of rash
 ➤ What if rash was due to Rif and he was INH resistant, is PZA/EMB a good idea?

No, PZA poor at preventing resistance
Treatment of TB
Completion of Therapy
- Initial phase: all of the specified doses should be delivered within 3 months
- Continuation phase: all of the specified doses should be administered within 6 months
- Thus, a 6-month regimen should be completed within 9 months

End of Therapy
- Determined by number of doses completed and not number of months
- Duration of treatment is a clinical decision based on the following factors:
 - Extent of disease
 - Time to sputum culture conversion
 - Complexity of the case and site of disease
 - Presence of drug resistance
- End of treatment evaluation: chest x-ray (CXR) and sputum (especially if adherence questionable or drug resistance found)

Treatment Outcomes for Pulmonary TB

Grzybowski S et al, Bull Int Union Tuberc 1978; (53)2: 70-5
Summary

Treatment and its completion is the single most important factor in controlling TB in a population

- Cuts the line of transmission
- Decreases morbidity and mortality
- Prevents acquired drug resistance

Success requires provider knowledge, a patient-centered approach, and a meaningful relationship between the patient and provider.

Use an expert when encountering problems!

The End