Tuberculosis
Clinical Presentation & Diagnosis

Tuberculosis Clinical Intensive
Wednesday, June 3, 2015
Christopher Spitters, MD, MPH
Public Health Seattle & King County Tuberculosis Clinic

Clinical Presentation: Signs and symptoms

- Cough (dry/productive sputum): 75-80%
- Weight loss: 45-75%
- Fatigue: 60-70%
- Fever: 50-60%
- Night Sweats: 50-55%
- Hemoptysis: 25-35%
- No symptoms: 10-20%

Source: Barnes 1988, Miller 2000

Clinical Presentation: Site of Disease

CDC Reported TB Cases by Form of Disease United States, 2010

- Pulmonary: 68%
- Extrapulmonary: 22%
- Pleural: 16%
- Lymphatic: 40%
- Bone/joint: 10%
- Peritoneal: 3%
- Genitourinary: 5%
- Other: 18%
- Meningeal: 6%

- Both: 10%
Differential Diagnosis

- Community acquired pneumonia
- Malignancy
- Lung abscess
- Non-TB mycobacteria
- Fungal infection
- Parasite (e.g., paragonimiasis)
- Sarcoidosis
- Rheumatologic disease (e.g., Wegener’s, RA)
- Other systemic infections (e.g. brucellosis, melioidosis, relapsing fever, etc.)

Radiographic Patterns: Pulmonary TB

<table>
<thead>
<tr>
<th>TB Pattern</th>
<th>“Typical”/ Reactivation</th>
<th>“Atypical”/ Primary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infiltrate</td>
<td>85% upper</td>
<td>Upper:Lower 60:40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Usually upper in children</td>
</tr>
<tr>
<td>Cavitation</td>
<td>Often present</td>
<td>Rare</td>
</tr>
<tr>
<td>Adenopathy</td>
<td>Rare</td>
<td>Children common</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adults ~30%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unilateral > bilateral</td>
</tr>
<tr>
<td>Effusion</td>
<td>May be present</td>
<td>May be present</td>
</tr>
<tr>
<td>HIV</td>
<td>CD4 >200</td>
<td>CD4 < 200</td>
</tr>
</tbody>
</table>
Radiographic Findings EPTB

- Lymphadenopathy with central attenuation, septation (neck, chest, abdomen, pelvis)
- Effusions
- Diskitis osteomyelitis +/- paraspinous abscess
- Enhancement of meninges, peritoneum, pericardium
- Ring enhancing CNS lesions
- Omental stranding, mesenteric adenopathy
- Bowel wall thickening +/- abscess
- Urinary collecting system obstruction +/- renal parenchymal destruction
- Adnexal mass
Baseline Diagnostic Examinations for TB (1)

- Imaging
- Sputum (if imaging suggests TB or if immunosuppressed)
 - 1 spot and 2 consecutive first-morning specimens
 - Acid-fast bacillus (AFB) smear and culture x3
 - Nucleic acid amplification testing (NAAT) x1-2
- Drug susceptibility testing
 - Molecular (rpoB, katG, inhA, pncA, gyrA, etc.)
 - Culture/MGIT/plates

Baseline Diagnostic Examinations for TB (2)

- Extrapulmonary specimens
 - Chemistry, cell count and cytology on fluids
 - Routine pathology on tissues
 - AFB stain/smear and culture
 - NAAT on sputum, BAL, other fluids and unfixed tissues
 - ADA on pleural and peritoneal fluid??
 - Negative predictive value better than positive predictive value

Additional Examinations in Evaluation for Active TB

- TST?? IGRA??
- HIV serology
- CBC/DIFF
 - Anemia (microcytic>normocytic>macrocytic)
 - Thrombocytosis
- CMP
 - Low albumin
- ESR, CRP
Collection of Respiratory Specimens

- Sputum Expectoration:
 - 3 specimens (at least 8 hours apart)
 - 1 spot specimen (induce prn)
 - 2 consecutive first-morning specimens
- Gastric Aspiration
- Bronchoscopy
- Post-bronchoscopy sputum

Role of the 3rd Sputum Specimen

<table>
<thead>
<tr>
<th>Specimen Number</th>
<th>Incremental Yield (of all smear positive)</th>
<th>Incremental Sensitivity (of all culture positive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85.8%</td>
<td>53.8%</td>
</tr>
<tr>
<td>2</td>
<td>11.9%</td>
<td>11.1%</td>
</tr>
<tr>
<td>3</td>
<td>2.4%</td>
<td>3.1%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>68.0%</td>
</tr>
</tbody>
</table>

Average yield of single early morning specimen: 86.4%
Average yield of single spot specimen: 73.9%

AFB smear-negative TB

- Up to 50% of TB cases are AFB smear-negative
- AFB smear results are an indicator of bacillary load and infectiousness, but negative smears to not exclude disease nor contagiousness
- Consider smear results in the overall context of evaluation, but do not “rule out” TB with negative smears when the clinical suspicion for TB is high.
Bronchoscopy Indications

- Unable to obtain specimen via induction or gastric aspirate
- Sputum smear/PCR negative but clinical suspicion of TB still high
- Sputum smear negative and MDR is a high concern
- Malignancy is suspected

Post-Bronchoscopy Sputum

- 57 sputum smear-negative or non-productive
 - 33% AFB smear-positive PBS
 - 7% PBS sole culture-positive specimen
- 56 culture-confirmed cases with negative sputum AFB smears or non-productive
 - AFB smear sensitivity:
 - BAL 57%
 - PBS 77%
 - BAL + PBS 84%

Collection of Other Specimens

- Thoracentesis/paracentesis/lumbar puncture
- Fine needle aspirate (cervical LN)
- Pleural/peritoneal biopsy
- CT-guided needle (chest mass, psoas abscess)
- Video-assisted thoracoscopic surgery
- Mediastinoscopy
- Excision/debridement (LN, bone/joint)
Pleural TB Specimens

- Respiratory (sputum, BAL)
- Pleural fluid
- Pleural biopsy

Typical Findings Extrapulmonary Specimens

- Protein elevated
 - Pleural/peritoneal (>4-5gm/dL)
 - CSF (>100-500mg/dL)
- Moderately decreased glucose (~40-50mg/dL)
- Pleocytosis
 - Pleural (500-5,000 WBC/μL)
 - CSF (100-500/μL)
- Lymphocyte predominant differential
- Necrotizing granulomata
- NAAT 50-75%
- AFB smear: 10-50% AFB culture: 60-90%

Laboratory Diagnosis:
Predictive value of a positive smear

Smear positive for AFB
\[\rightarrow\]
Culture and Speciation

\[M.\ tuberculosis\] 50-90%
\[\text{Non-tuberculous mycobacteria}\] 10-50%

Predictive value of a positive smear is reduced in populations with increased prevalence of non-tuberculous mycobacterial infection
Nucleic Acid Amplification Tests (NAAT)

- Varieties
 - Amplified MTD (GenProbe)
 - GeneXpert Mtb/RIF (Cepheid)
 - Non FDA Approved
 - MTBDR Plus (Hain)
 - Others
 - Laboratory developed

- Use
 - Directly on processed specimen
 - No current TB rx >7 days
 - No prior TB rx within past 12 months

Xpert MTB/RIF Test Performance for Diagnosis of Pulmonary TB

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smear pos. TB</td>
<td>95-98%</td>
<td>99%</td>
</tr>
<tr>
<td>Smear neg. TB</td>
<td>60-72%</td>
<td></td>
</tr>
<tr>
<td>Rifampin “R”</td>
<td>98-99%</td>
<td>99-100%</td>
</tr>
</tbody>
</table>

Laboratory Diagnosis: Approaches to Using NAAT

Patient with **smear-positive** specimen

- Positive NAAT
 - MTB ≥97%
 - NTM <3%
- Negative NAAT
 - MTB 1-8%
 - NTM 92-99%

- 2009 CDC Guidelines: Test all AFB+/NAAT- specimens for inhibitors
- Probably not necessary if using Xpert, which tests for PCR inhibitors
NAAT Performance
Sputum Smear Negative

High Clinical Suspicion (e.g., 50% pre-test probability)

Perform NAAT

Positive NAAT

MTB ≥ 90%

Negative NAAT

MTB 10%

MTB 25%

MTB 75%

NAAT Performance
Sputum Smear Negative

Low Clinical Suspicion; e.g., 5% pre-test probability

Perform NAAT??

Positive NAAT

MTB 20%

Negative NAAT

MTB 80%

MTB <1%

Molecular Drug Susceptibility Testing
Detection of Common Resistance Conferring Mutations

- Requirements: sufficient DNA (smear positive sputum or culture growth)
- Time to results: ~1 week
- Target sequences: rpoB, katG, inhA, others
 - Xpert MTB-RIF (rpoB only)
 - Hain GenoType MDR-TB-Plus (rpoB, inhA, katG)
 - WA DOH TB Lab (rpoB, katG, inhA, pncA)
 - CDC (all of the above, gyrA, emb, [injectables])

2009 CDC Guidelines: Consider repeat test for confirmation if AFB-, NAAT+
May not be necessary if using Xpert, given high specificity and low risk of cross-contamination

2009 CDC Guidelines: Avoid NAAT in this clinical scenario
Same holds true for Xpert, which provides no added value over smear
Molecular Drug Susceptibility Testing
Typical Indications
• Treatment failure
• Previous treatment for active TB
• Known contact to confirmed case of MDR
• From a highly MDR-endemic setting (e.g., S. Africa, Baltic states, Russian prison)

Culture-negative TB
Diagnostic Criteria
• Compatible clinical and radiographic syndrome
• AFB cultures negative
 – 10-15% pulmonary
 – 25-30% extrapulmonary
• Clinical/radiographic improvement on therapy
• Other causes reasonably excluded
• Positive TST-or-IGRA

Latent TB Diagnosis
Latent TB
Diagnostic Criteria
- No symptoms suggestive of TB
- Epidemiologic risk for acquisition
- Positive IGRA-or-TST
- Normal PA CXR (PA/LAT if <5 y/o)
- CDC/ATS Class 2

Old, Inactive TB
Diagnostic Criteria
- No symptoms suggestive of TB
- Compatible chest radiograph
 - Upper zone fibrotic, fibronodular, or fibrocalcific opacities
 - Volume loss/retration
- Positive IGRA-or-TST
- Negative sputum AFB smears and cultures
- Follow-up CXR stable
- CDC/ATS Class 4

Cases
Case 1 Clinical Presentation

- Cough, chest pain, fever, anorexia x 6 weeks
- What is your next step?

Case 1: Chest Radiographs
2007 vs 2013

Case 1—Evaluation

- Sputum AFB smears 1+ on 2 separate specimens
- What else?
Case 1: NAAT

- Positive for MTB
- Negative for MAC

Case 2—Clinical Presentation

- 33 y/o Amharic-Ethiopian male
- Visited home recently for 3 months
- Malaise, fatigue, fever x 1 month
- Left chest pain worsening over past 2-3 weeks
- Weight 63kg → 60kg
- T 38.5°C; left base dull to percussion with decreased breath sounds

Case 2—Chest Radiograph
Case 2—Initial Evaluation

- HIV negative
- Hgb 10, MCV 80, albumin 3.1
- TST placed

Case 2—Pleural Fluid

- Protein 4.4 gm/dL,
- WBC ~1500 (65% lymphocytes)
- No AFB seen
- Pleural biopsy: necrotizing granulomata without visible AFB (culture pending, PCR not done)
- TST 18mm

Case 2—Week 4 Chest Radiograph

Diagnosis after thoracentesis	After 4-Weeks Rx
Questions? Comments?

christopher.spitters@kingcounty.gov