Drug-Resistant Tuberculosis

A SURVIVAL GUIDE FOR CLINICIANS

3RD EDITION
3rd Edition Contributors

Pennan M. Barry, MD, MPH
Chief, Surveillance and Epidemiology Section
Tuberculosis Control Branch
Division of Communicable Disease Control
Center for Infectious Diseases
California Department of Public Health, Richmond, California

Adithya Cattamanchi, MD, MAS
Associate Professor of Medicine
Division of Pulmonary and Critical Care Medicine
Department of Medicine
San Francisco General Hospital/University of California, San Francisco

Lisa Chen, MD
Principal Investigator/Medical Director
Curry International Tuberculosis Center, Oakland, California
Professor, Division of Pulmonary and Critical Care Medicine
University of California, San Francisco

Amit S. Chitnis, MD, MPH
Public Health Medical Officer, Tuberculosis Control Branch
Division of Communicable Disease Control
Center for Infectious Diseases
California Department of Public Health, Richmond, California

Charles L. Daley, MD
Chief
Division of Mycobacterial and Respiratory Infections
National Jewish Health
Denver, Colorado

Jennifer M. Flood, MD, MPH
Chief, Tuberculosis Control Branch
Division of Communicable Disease Control
Center for Infectious Diseases
California Department of Public Health, Richmond, California

David E. Griffith, MD
Assistant Medical Director
Heartland National Tuberculosis Center
San Antonio, Texas
University of Texas Health Science Center at Tyler

Shou-Yean Grace Lin, MS
Research Scientist
Microbial Diseases Laboratory
California Department of Public Health, Richmond, California

Ann M. Loeffler, MD
Pediatric Infectious Diseases and Inpatient Medicine
Randall Children’s Hospital at Legacy Emanuel, Portland, Oregon
Pediatric Tuberculosis Consultant
Curry International Tuberculosis Center, Oakland, California

Lisa Pascopella, PhD, MPH
Senior Epidemiologist, Tuberculosis Control Branch
Division of Communicable Disease Control
Center for Infectious Diseases
California Department of Public Health, Richmond, California

Charles A. Peloquin, PharmD
Professor, and Director
Infectious Disease Pharmacokinetics Laboratory
College of Pharmacy, and Emerging Pathogens Institute
University of Florida, Gainesville, Florida

Ann M. Raftery, RN, PHN, MS
Associate Medical Director
Curry International Tuberculosis Center
University of California, San Francisco, Oakland, California

Randall E. Reves, MD, MSc
Professor
Division of Infectious Diseases, Department of Medicine
University of Colorado Denver School of Medicine
Denver, Colorado

Gisela F. Schecter, MD, MPH
Consultant, MDR-TB Service
Tuberculosis Control Branch
Division of Communicable Disease Control
Center for Infectious Diseases
California Department of Public Health, Richmond, California

Barbara J. Seaworth, MD
Medical Director
Heartland National Tuberculosis Center
San Antonio, Texas
University of Texas Health Science Center at Tyler

Lisa True, RN, MS
MDR Nurse Coordinator/Program Liaison
Tuberculosis Control Branch
Division of Communicable Disease Control
Center for Infectious Diseases
California Department of Public Health, Richmond, California

Editors
Lisa Chen, MD
Gisela F. Schecter, MD, MPH

Editorial Board
Charles L. Daley, MD
Jennifer M. Flood, MD, MPH
Ann M. Loeffler, MD

Project Manager
Kay Wallis, MPH
Curry International Tuberculosis Center
University of California, San Francisco
Oakland, California
Peer Reviewers

David Ashkin, MD
Southeastern National Tuberculosis Center
University of Florida
Gainesville, Florida

Heidi Behm, RN, MPH
Tuberculosis Program, Center for Public Health Practice
Oregon Health Authority
Portland, Oregon

William Burman, MD
Denver Public Health
Denver Health
Denver, Colorado

Adithya Cattamanchi, MD, MAS
Division of Pulmonary and Critical Care Medicine
Department of Medicine
San Francisco General Hospital/University of California, San Francisco
San Francisco, California

Peter Cegielski, MD, MPH
International Research and Programs Branch
Division of TB Elimination
National Center for HIV, Hepatitis, STD and TB Prevention
Centers for Disease Control and Prevention, Atlanta, Georgia

Amit S. Chitnis, MD, MPH
Tuberculosis Control Branch
Division of Communicable Disease Control
Center for Infectious Diseases
California Department of Public Health, Richmond, California

Deliana Garcia, MA
International Research and Development
Migrant Clinicians Network
Austin, Texas

Julie M. Higashi, MD, PhD
Tuberculosis Prevention and Control Program
San Francisco Department of Public Health
San Francisco, California

Jillian Hopewell, MFA, MA
Education and Professional Development
Migrant Clinicians Network
Chico, California

C. Robert Horsburgh, Jr., MD, MUS
Department of Epidemiology, School of Public Health
Department of Medicine, School of Medicine—Boston University
Boston, Massachusetts

Alfred A. Lardizabal, MD
New Jersey Medical School Global Tuberculosis Institute at Rutgers
The State University of New Jersey
Newark, New Jersey

Erica Lessem, MPH
Tuberculosis/HIV Project
Treatment Action Group
New York City, New York

Shou-Yean Grace Lin, MS
Microbial Diseases Laboratory
California Department of Public Health
Richmond, California

Julie E. Low, MD
Pulmonary Disease Services
Orange County Health Care Agency
Santa Ana, California

Sundari Mase, MD, MPH
Field Services and Evaluation Branch, Division of TB Elimination
National Center for HIV, Hepatitis, STD and TB Prevention
Centers for Disease Control and Prevention, Atlanta, Georgia

Leona Mason, FNP, MPH
Inpatient Tuberculosis Unit, Infectious Diseases Division
Olive View - UCLA Medical Center
Sylmar, California

Beverly Metchock, DrPH
Laboratory Branch, Division of TB Elimination
National Center for HIV, Hepatitis, STD and TB Prevention
Centers for Disease Control and Prevention, Atlanta, Georgia

Kathleen Moser, MD, MPH
Tuberculosis Control Program
San Diego County Health and Human Services Agency
San Diego, California

Payam Nahid, MD, MPH
Division of Pulmonary and Critical Care Medicine
Department of Medicine
University of California, San Francisco
San Francisco, California

Masahiro Narita, MD
Tuberculosis Control Program, Public Health – Seattle & King County
Division of Pulmonary & Critical Care, University of Washington
Seattle, Washington

Diana M. Nilsen, MD, RN
Bureau of Tuberculosis Control
New York City Department of Health & Mental Hygiene
New York City, New York

Lisa Pascopella, PhD, MPH
Tuberculosis Control Branch
Division of Communicable Disease Control
Center for Infectious Diseases, California Department of Public Health
Richmond, California
Acknowledgements

Special appreciation is extended to the members of the MDR-TB Service of the Tuberculosis Control Branch at the California Department of Public Health (CDPH). Their systematic approach to providing expert consultation on cases of drug-resistant TB in California provided the initial inspiration to produce this Guide, and their shared expertise is reflected in its pages. The editorial board also thanks James Watt, MD, MPH, Chief of the Division of Communicable Disease Control, CDPH, for his leadership and support.

Many individuals were involved in the writing, editing, research, and review of two previous editions of Drug-Resistant Tuberculosis: A Survival Guide for Clinicians. The editors and editorial board of this third edition gratefully acknowledge the ongoing legacy of their contributions.

We would also like to acknowledge: Jennifer J. Furin, MD, PhD, Case Western Reserve University and the Sentinel Project (Chapter 6); and Ellen Murray, RN, BSN, Southeastern National Tuberculosis Center (Chapter 8), for sharing their specific expertise.
Table of Contents

INTRODUCTION ... ix

ACRONYMS AND ABBREVIATIONS ... xiii

1. EPIDEMIOLOGY AND BACKGROUND 1
 Definitions ... 2
 Drug-resistant TB across the globe .. 2
 Drug-resistant TB in the United States 3
 Sources of drug-resistant TB in the United States 7
 How is drug resistance generated? .. 8
 References ... 11

2. DIAGNOSIS ... 13
 Risk assessment for drug resistance .. 15
 In persons with a history of prior TB 15
 In persons without prior TB history 15
 Questions to ask your patient ... 16
 Testing for TB infection ... 18
 Testing for TB disease .. 18
 Molecular assays ... 18
 Testing for drug resistance ... 19
 Molecular assays (Xpert MTB/RIF) 20
 When to use rapid molecular tests for drug resistance 21
 Communication with the TB laboratory 23
 When to order second-line drug testing 23
 False-positive results ... 24
 Discordant results ... 25
 Use of strain typing ... 27
 Resources and references .. 28

3. LABORATORY .. 31
 General information on TB laboratory work 32
 Communication between clinician and laboratory 34
 How should specimens be collected for smear and culture? ... 35
 Microscopy, culture identification, and growth-based testing 36
 AFB smear .. 36
 Culture identification .. 36
 Conventional growth-based drug susceptibility testing (DST) ... 37
 Critical concentration and minimum inhibitory concentration (MIC) ... 41
 Molecular methods for detection of *M. tuberculosis* complex and drug resistance . 44
 Molecular detection of *M. tuberculosis* complex 44
 Genes associated with drug resistance 45
 Molecular tests for drug resistance 48
 • Probe-based tests ... 49
 (Molecular beacon assay: Xpert MTB/RIF; Line-probe assays) . 49
 • Sequence-based tests .. 51
 • Choice of molecular tests .. 52
 • Difficulties interpreting results from molecular tests 52
• Molecular tests on extrapulmonary specimens 54
• Molecular tests on formalin-fixed specimens 55
Therapeutic drug monitoring (TDM) ... 56
National TB genotyping service .. 59
References ... 61

4. TREATMENT .. 63
Consultation with experts ... 64
Classification of anti-tuberculosis drugs ... 65
Starting an expanded empiric treatment regimen 66
Individualized treatment regimens ... 67
 Mono-resistant *M. tuberculosis* ... 67
 Poly-resistant *M. tuberculosis* ... 69
 Multidrug-resistant *M. tuberculosis* (MDR-TB) 71
 Duration of therapy ... 73
Selection and dosing of individual drugs: Additional considerations 75
 Cross-resistance .. 75
 Avoid drugs used previously ... 75
 Consider side effects .. 75
Individual regimens for specific MDR-TB resistance patterns 77
Extensively drug-resistant *M. tuberculosis* (XDR-TB) 79
Specific drugs ... 81
 First-line .. 81
 Second-line ... 82
 Third-line .. 85
 New drugs: BDQ, DLM .. 86
Administration of the treatment regimen ... 88
 Escalation of dosages (drug ramping) ... 88
Therapeutic drug monitoring (TDM) ... 89
Role of surgery .. 91
Outcomes of treatment .. 92
References .. 93

5. MEDICATION FACT SHEETS .. 99
Amikacin ... 100
Amoxicillin/clavulanate .. 102
Bedaquiline ... 104
Capreomycin .. 106
Clarithromycin .. 108
Clofazimine .. 110
Cycloserine .. 112
Delamanid .. 114
Ethambutol ... 116
Ethionamide ... 118
Imipenem/Cilastatin ... 120
Isoniazid .. 122
Kanamycin ... 124
Levofloxacin .. 126
Linezolid ... 128
Meropenem .. 130
Moxifloxacin ... 132
Para-aminosalicylate ... 134
Pyrazinamide .. 136
Rifabutin .. 138
Rifampin .. 140
Rifapentine .. 142
Streptomycin ... 144
New anti-TB drugs in the pipeline .. 146
References .. 147
Patient-centered care and ensuring adherence 212
Directly observed therapy ... 214
Providing the injectable agent ... 215
Patient education ... 217
Psychosocial support ... 219
Economic support .. 221
Use of legal orders .. 224
Continuity of care .. 225
Hospitalization and discharge planning 225
Interjurisdictional transfers ... 225
Co-management with private providers 226
Incarcerated patients ... 227
Infection control .. 228
Drug supply management .. 232
Tools for monitoring and case management 234
1. Drug-O-Gram ... 234
2. MDR-TB Monitoring Checklist ... 235
3. Bacteriology Flow Sheet ... 236
4. Laboratory Flow Sheet .. 237
5. Vision Screening Flow Sheet .. 238
6. Hearing and Vestibular Screening Flow Sheet 239
Resources and references .. 240

9. ADVERSE REACTIONS .. 245
Introduction ... 246
Gastrointestinal ... 247
Hepatotoxicity ... 251
Dermatologic reactions ... 253
Maculopapular rash and pruritus .. 253
Flushing reactions .. 254
Photosensitivity and hyperpigmentation 254
Lichenoid drug reactions ... 254
Hives and urticarial .. 254
Drug rechallenge (table) .. 255
Oral desensitization (table) .. 256
Severe drug reactions ... 257
Systemic reactions .. 257
Hypersensitivity syndrome (DRESS) 257
RIF hypersensitivity reactions ... 259
Hematologic abnormalities .. 259
Neurotoxicity ... 261
Peripheral neuropathy ... 261
Central nervous system toxicity ... 262
• Psychiatric effects ... 263
• Seizures .. 264
• Serotonin syndrome ... 265
Introduction to this *Survival Guide*

The need for expertise

At the time of completion of this third edition of the *Survival Guide*, the World Health Organization (WHO) announced that tuberculosis (TB) now ranks alongside HIV as the leading cause of death from infectious disease worldwide. Although global efforts have begun to decrease the overall incidence of TB, there is a significant task ahead to reach elimination, particularly with the rising threat of drug resistance. As noted in the *National Action Plan for Combating Multidrug-Resistant Tuberculosis* (released by the White House, December 2015), of the estimated global burden of 480,000 cases of multidrug-resistant tuberculosis (MDR-TB), only 10% are being cured each year. Whether a provider practices in a high- or low-burden country for TB, the need for expert knowledge on how to appropriately care for drug-resistant TB remains vital.

Given the steady decline of TB cases in the United States (and even lower incidence of drug-resistant TB disease), health care providers—especially in low-incidence areas of the United States—may lack the knowledge and experience needed to successfully diagnose and treat TB, much less to manage the complications posed by drug resistance. In recognition of these challenges, national guidelines call for treatment of drug-resistant TB to be provided by or in close consultation with experts. The Tuberculosis Control Branch of the California Department of Public Health (CDPH) has provided such expert consultation services for the past 12 years to systematically address the care of drug-resistant TB cases in California. The original CDPH model was based on the shared expertise of two successful programs: the Texas Department of State Health Services and the Los Angeles County MDR-TB Unit, which utilize a multidisciplinary team approach to provide longitudinal oversight and case management advice throughout the entire course of complex treatment.

To complement its service, CDPH collaborated with the Curry International Tuberculosis Center (CITC) to develop the first edition (2004) of *Drug-Resistant Tuberculosis: A Survival Guide for Clinicians* as a practical reference for providers. A second edition was released in 2008 and reprinted in 2011. Recognizing the national need for such a resource, CDPH and CITC have disseminated the Guide to jurisdictions and providers across the country.

In preparation for the third edition, the editors conducted an extensive needs assessment, including a national survey of TB controllers, public health and private sector clinicians, and other users of the Guide. In-depth key informant interviews with TB experts and practitioners were also conducted to ensure that the third edition content best reflects the evolving dynamics of diagnosing and treating drug-resistant TB. A group of 16 authors representing experts from public health and academia contributed to the writing, and a national panel of 34 peer reviewers provided commentary. This third edition of the Guide presents the best practice strategies available in late 2015.
What’s new in the third edition of the Guide

- Updated epidemiology of TB and MDR-TB is featured in Chapter 1, Epidemiology and Background.

- Find updated information about diagnosing TB disease and drug-resistance, including the use of rapid molecular testing, in Chapter 2, Diagnosis.

- Chapter 3, Laboratory, is a new chapter presenting information about the laboratory tests used to confirm TB disease and drug resistance, including detailed discussions on understanding critical concentrations and minimum inhibitory concentration (MIC), advanced molecular detection methods, and the genes and mutations associated with drug resistance.

- Chapter 4, Treatment, includes information based on current evidence and expert consensus for the treatment of drug-resistant TB, including information on the use of new drugs and therapeutic drug monitoring.

- Updated information about 23 medications used to treat tuberculosis is found in Chapter 5, Medication Facts Sheets, including 5 new fact sheets not included in the second edition of the Guide: bedaquiline, clarithromycin, delamanid, meropenem, and rifapentine. Also new in Chapter 5 is a diagram illustrating “New anti-TB drugs in the pipeline.”

- Expanded information about diagnosing and treating drug-resistant TB disease and LTBI in children is now devoted to its own chapter—Chapter 6, Pediatrics.

- New sections on “TB and Diabetes” and “Solid Organ Transplant” have been added to Chapter 7, Co-Morbidities and Special Situations.

- Two previous chapters were reconfigured into an expanded single Chapter 8, Monitoring and Case Management.

- Chapter 9, Adverse Reactions, and Chapter 10, Contacts, contain the latest information and best practice recommendations.

- Streamlined Appendices offer updated lists of resources and contact information.
Description of the Guide and target audience

The Guide contains information and user-friendly tools and templates for use by any U.S.-based clinician who participates in the management of patients with drug-resistant TB. From physicians to pharmacists, infection control practitioners to public health nurses, the Guide arms all healthcare providers in the fight against drug-resistant TB and should serve as an useful adjunct to expert consultative services. The 10 chapters cover major topics pertaining to epidemiology, diagnosis, laboratory issues, treatment, TB medications, pediatric TB, co-morbidities and special situations, monitoring and case management, adverse reactions, and management of contacts. While readers are encouraged to review all sections of the Guide, each section is designed to be self-contained. For example, when a reader needs details about specific anti-tuberculosis drugs, he/she can refer to Chapter 5, Medication Fact Sheets, to find the properties and details of individual drugs. When a patient is experiencing a potential side effect, the clinician can turn to Chapter 9, Adverse Reactions, for a review of appropriate management of toxicity, or to Chapter 5 for the individual fact sheets about the medications the patient is receiving.

Although conceived in California, the Guide is designed for a national audience of providers in both the public and private sectors of health care. Authors and reviewers from all national geographic areas contributed to its content. When considering the recommendations presented in this Guide, users are advised to consult the policies and protocols of their local jurisdictions.

A lack of data

The authors of this Guide acknowledge that hard data are often lacking to assist clinicians in the management of MDR-TB. Many of the drugs used to treat drug-resistant TB are not Food and Drug Administration (FDA)-licensed for these indications. Examples include amikacin, all of the fluoroquinolones, linezolid, and rifabutin. Much-needed research is currently underway to more thoroughly document the clinical efficacies of various treatment regimens for drug-resistant TB. In many cases, the information presented in this Guide is based on expert opinion, given the paucity of randomized controlled trials in this area.

At the time of publication for the third edition of the Guide, the first set of U.S. national guidelines for the care and management of drug-resistant TB are under development and will serve as a new key reference with additional best practice guidance for providers.

Areas of practice variation

In recognition of the complexity of care and the gaps in evidence-based guidance, it is important for providers to appreciate key areas of practice variation. The following are a few examples of elements of drug-resistant TB care that vary among experts and existing guidelines (there are no randomized controlled trials to support any of these preferences):

- Total duration of injectable drug therapy: Current WHO guidelines recommend 8 months of injectable therapy. More common practice in the United States is to use culture conversion as a benchmark and administer the injectable drug for at least 6 months after culture conversion. Some experts use these drugs up to 12 months, especially if there are fewer than 3-4 oral drugs to complete therapy.
• **Total duration of therapy**: Some experts recommend 18-24 months of therapy total, and some treat 18-24 months from the time of culture conversion. International guidelines (WHO) recommend at least 20 months total duration. Recommendations based on expert consensus in this version of the *Survival Guide* recommend a total duration of at least 18 months beyond culture conversion. Pediatric series have used shorter durations of therapy.

• **Number of drugs in the regimen**: Newer series suggest that better outcomes are associated with more drugs. Expert opinion varies: some experts begin with 4 to 6 drugs to which the isolate is susceptible with the goal of using 3 to 4 oral drugs to complete the therapy. Others would initially use as many drugs as are available. This strategy allows room to eliminate drugs from the regimen as toxicity develops and as more susceptibility results become available.

• **Duration of daily aminoglycoside/capreomycin therapy**: Assuming good clinical and microbiologic response, some experts feel comfortable using daily injectable therapy for as little as 1-2 months before changing to 3-times-weekly therapy. Others use 6 months of daily therapy (barring toxicity or renal impairment) before changing to intermittent therapy.

• **Dose of aminoglycoside/capreomycin**: The standard daily/intermittent dose for the aminoglycosides is 15 mg/kg/dose. Some authors use up to 25 mg/kg/dose for intermittent therapy and tolerate peak levels up to 65 to 80 mcg/ml. Experts who treat with longer courses of injectable drugs are comfortable with peak levels as low as 20 to 35 mcg/ml. Note: Doses achieving lower levels than these will not achieve the desired effect in the regimen and may lead to amplification of resistance.

• **Use of therapeutic drug monitoring (TDM)**: Several indications for use of TDM are universally agreed upon: 1) aminoglycoside/capreomycin levels in the setting of renal impairment, change in renal function or concerns about ototoxicity; 2) routine cycloserine levels to keep the level below 35 mcg/ml (associated with marked increase risk of central nervous system [CNS] toxicity); and 3) ethambutol level monitoring in the setting of renal impairment (increased risk of ophthalmic toxicity). TDM is also used by some providers who are concerned about possible malabsorption of drugs (especially in failing treatment regimens, patients with HIV, patients with history of stomach surgery, patients with extremely low body mass index, and those with diarrheal processes). Some experts use TDM routinely and serially, especially for monitoring the levels of injectable drugs.

• **Treatment of MDR-LTBI and use of window prophylaxis for MDR-TB contacts**: Some providers use fluoroquinolone monotherapy for MDR-LTBI, and some use 2-drug therapy. Some experts and jurisdictions use window prophylaxis for contacts to MDR-TB, typically with 2 drugs to which the isolate is susceptible.

Each case presents specific complexities. The need for individualization of care ultimately determines management decisions. While use of this *Guide* should serve as a useful supplement during care, consultation with experts remains an essential component of successful treatment and should be encouraged throughout the care of all drug-resistant cases. Contact information for expert resources can be found in Appendix 1.
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFB</td>
<td>acid-fast bacilli</td>
</tr>
<tr>
<td>AIDS</td>
<td>acquired immunodeficiency syndrome</td>
</tr>
<tr>
<td>AK</td>
<td>amikacin</td>
</tr>
<tr>
<td>ALT</td>
<td>alanine aminotransferase</td>
</tr>
<tr>
<td>ANA</td>
<td>antinuclear antibodies</td>
</tr>
<tr>
<td>AMX/CLV</td>
<td>Amoxicillin/clavulanate</td>
</tr>
<tr>
<td>ART</td>
<td>antitubercular therapy</td>
</tr>
<tr>
<td>AST</td>
<td>aspartate aminotransferase</td>
</tr>
<tr>
<td>ATS</td>
<td>American Thoracic Society</td>
</tr>
<tr>
<td>BAL</td>
<td>bronchoalveolar lavage</td>
</tr>
<tr>
<td>BCG</td>
<td>bacille Calmette-Guérin</td>
</tr>
<tr>
<td>BDQ</td>
<td>bedaquiline fumarate</td>
</tr>
<tr>
<td>BID</td>
<td>twice a day</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BUN</td>
<td>blood urea nitrogen</td>
</tr>
<tr>
<td>CAPD</td>
<td>continuous ambulatory peritoneal</td>
</tr>
<tr>
<td>CBC</td>
<td>complete blood count</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and</td>
</tr>
<tr>
<td></td>
<td>Prevention</td>
</tr>
<tr>
<td>CDPH</td>
<td>California Department of Public</td>
</tr>
<tr>
<td></td>
<td>Health</td>
</tr>
<tr>
<td>CFZ</td>
<td>clofazimine</td>
</tr>
<tr>
<td>CITC</td>
<td>Curry International Tuberculosis</td>
</tr>
<tr>
<td></td>
<td>Center</td>
</tr>
<tr>
<td>CLR</td>
<td>clarithromycin</td>
</tr>
<tr>
<td>CM</td>
<td>capreomycin</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CS</td>
<td>cycloserine</td>
</tr>
<tr>
<td>CSF</td>
<td>cerebrospinal fluid</td>
</tr>
<tr>
<td>CXR</td>
<td>chest x-ray</td>
</tr>
<tr>
<td>DLM</td>
<td>delamanid</td>
</tr>
<tr>
<td>DM</td>
<td>diabetes mellitus</td>
</tr>
<tr>
<td>DOT</td>
<td>directly observed therapy</td>
</tr>
<tr>
<td>DST</td>
<td>drug-susceptibility testing</td>
</tr>
<tr>
<td>EMB</td>
<td>ethambutol</td>
</tr>
<tr>
<td>ETA</td>
<td>ethionamide</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FQN</td>
<td>fluoroquinolone</td>
</tr>
<tr>
<td>GI</td>
<td>gastrointestinal</td>
</tr>
<tr>
<td>HEPA</td>
<td>high efficiency particulate air</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>IDSA</td>
<td>Infectious Diseases Society of</td>
</tr>
<tr>
<td></td>
<td>America</td>
</tr>
<tr>
<td>IGRA</td>
<td>interferon gamma release assay</td>
</tr>
<tr>
<td>IM</td>
<td>intramuscular</td>
</tr>
<tr>
<td>IMP/CLN</td>
<td>imipenem/clavulinate</td>
</tr>
<tr>
<td>INH</td>
<td>isoniazid</td>
</tr>
<tr>
<td>IRIS</td>
<td>immune reconstitution inflammatory</td>
</tr>
<tr>
<td></td>
<td>syndrome</td>
</tr>
<tr>
<td>IUATLD</td>
<td>International Union Against</td>
</tr>
<tr>
<td></td>
<td>Tuberculosis and Lung Disease</td>
</tr>
<tr>
<td>IV</td>
<td>intravenous</td>
</tr>
<tr>
<td>KM</td>
<td>kanamycin</td>
</tr>
<tr>
<td>LFT</td>
<td>liver function test</td>
</tr>
<tr>
<td>LFX</td>
<td>levofloxacin</td>
</tr>
<tr>
<td>LPA</td>
<td>line probe assay</td>
</tr>
<tr>
<td>LTBI</td>
<td>latent tuberculosis infection</td>
</tr>
<tr>
<td>LZD</td>
<td>linezolid</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>MAC</td>
<td>Mycobacterium avium complex</td>
</tr>
<tr>
<td>MAO</td>
<td>monoamine oxidase</td>
</tr>
<tr>
<td>M. bovis</td>
<td>Mycobacterium bovis</td>
</tr>
<tr>
<td>MDDR</td>
<td>Molecular detection of drug resistance</td>
</tr>
<tr>
<td>MDR-TB</td>
<td>multidrug-resistant tuberculosis (resistant to at least isoniazid and rifampin)</td>
</tr>
<tr>
<td>MFX</td>
<td>moxifloxacin</td>
</tr>
<tr>
<td>MIC</td>
<td>minimum inhibitory concentration</td>
</tr>
<tr>
<td>MIRU</td>
<td>mycobacterial interspersed repetitive units</td>
</tr>
<tr>
<td>MPM</td>
<td>meropenem</td>
</tr>
<tr>
<td>M. tb complex</td>
<td>Mycobacterium tuberculosis complex</td>
</tr>
<tr>
<td>M. tuberculosis</td>
<td>Mycobacterium tuberculosis</td>
</tr>
<tr>
<td>NAAT</td>
<td>nucleic acid amplification test</td>
</tr>
<tr>
<td>NIOSH</td>
<td>National Institute for Occupational Safety and Health</td>
</tr>
<tr>
<td>NNRTI</td>
<td>non-nucleoside reverse transcriptase inhibitor</td>
</tr>
<tr>
<td>NPO</td>
<td>nothing by mouth</td>
</tr>
<tr>
<td>NSAID</td>
<td>nonsteroidal anti-inflammatory drug</td>
</tr>
<tr>
<td>NTM</td>
<td>nontuberculous mycobacteria</td>
</tr>
<tr>
<td>OFX</td>
<td>ofloxacin</td>
</tr>
<tr>
<td>PA</td>
<td>posteroanterior</td>
</tr>
<tr>
<td>PAP</td>
<td>patient assistance program</td>
</tr>
<tr>
<td>PAS</td>
<td>para-aminosalicylate</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PO</td>
<td>by mouth</td>
</tr>
<tr>
<td>PPD</td>
<td>purified protein derivative</td>
</tr>
<tr>
<td>PSQ</td>
<td>pyrosequencing</td>
</tr>
<tr>
<td>PZA</td>
<td>pyrazinamide</td>
</tr>
<tr>
<td>qam</td>
<td>every morning</td>
</tr>
<tr>
<td>qd</td>
<td>once a day</td>
</tr>
<tr>
<td>qhs</td>
<td>every evening</td>
</tr>
<tr>
<td>qid</td>
<td>four times a day</td>
</tr>
<tr>
<td>QFT-G</td>
<td>QuantiFERON®-TB Gold</td>
</tr>
<tr>
<td>QFT-GIT</td>
<td>QuantiFERON®-TB Gold In Tube</td>
</tr>
<tr>
<td>QT</td>
<td>the interval from the beginning of the QRS complex to the end of the T wave on an electrocardiogram</td>
</tr>
<tr>
<td>RFB</td>
<td>rifabutin</td>
</tr>
<tr>
<td>RFLP</td>
<td>restriction fragment length polymorphism</td>
</tr>
<tr>
<td>RIF</td>
<td>rifampin</td>
</tr>
<tr>
<td>RPT</td>
<td>rifapentine</td>
</tr>
<tr>
<td>SGPT</td>
<td>serum glutamic-pyruvic transaminase</td>
</tr>
<tr>
<td>SM</td>
<td>streptomycin</td>
</tr>
<tr>
<td>SOT</td>
<td>solid organ transplant</td>
</tr>
<tr>
<td>SSRI</td>
<td>selective serotonin reuptake inhibitor</td>
</tr>
<tr>
<td>TB</td>
<td>tuberculosis</td>
</tr>
<tr>
<td>TID</td>
<td>three times a day</td>
</tr>
<tr>
<td>TSH</td>
<td>thyroid stimulating hormone</td>
</tr>
<tr>
<td>TST</td>
<td>tuberculin skin test</td>
</tr>
<tr>
<td>WBC</td>
<td>white blood cell</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>XDR-TB</td>
<td>extensively drug-resistant tuberculosis</td>
</tr>
</tbody>
</table>