

Next-generation testing for pulmonary

Adithya Cattamanchi (University of California San Francisco) Claudia Denkinger (University Hospital Heidelberg)

Disclosures

• No relevant industry financial relationships

Learning objectives

- Explain current recommendations and available tools for rapid diagnosis of pulmonary TB in the United States and globally
- Improve knowledge of the progress and advances in development of novel diagnostics for pulmonary TB
 - Molecular testing
 - Urine LAM tests

Millions of patients today do not have access to TB diagnosis

WHO Global TB Report 2021

Tests for pulmonary TB: Current guidelines

ATS/IDSA/CDC 2017

- Sputum smear microscopy (strong recommendation)
- Liquid AND solid culture (strong recommendation)
- Molecular test for diagnosis (conditional recommendation)
- Molecular test for RIF +/- INHr (strong recommendation)

WHO 2021

- Rapid molecular test as first-line (strong recommendation)
- Universal testing for RIF +/- INHr (strong recommendation)
- Urine LAM for HIV+ inpatients (strong recommendation)
- Urine LAM for HIV+ outpatients (conditional recommendation)

Rapid tests for pulmonary TB: Current options

United States (FDA-approved)

- Molecular tests
 - Xpert MTB/RIF
 - 2 moderate complexity assays

Global (WHO-endorsed)

- Molecular tests
 - Xpert MTB/RIF
 - TB LAMP*
 - Xpert MTB/RIF Ultra
 - Truenat MTB/MTB Plus and MTB-RIF*
 - 4 moderate complexity assays*
- Determine TB-LAM for PLHIV (inpatients, outpatients*)

*Conditional recommendation

Truenat (Molbio, India)

- Automated, battery-operated devices for DNA extraction and PCR
- Disposable PCR chip (MTB, MTB Plus, MTB RIF)
- Results in less than one hour
- Similar performance to Xpert in a trial including 1800 participants at 19 sites in 4 countries

First serious competitor to Xpert MTB/RIF

Penn-Nicholson A et al, ERJ 2021

Moderate complexity automated PCR tests

Table 2.3: Head-to-head comparisons between index and WHO-endorsed assays for the

detection of *M. tuberculosis*

World Health Organization GLOBAL TB PROGRAMME NewsFlash

WHO evaluation of centralized assays for detection of TB and of resistance to rifampicin and isoniazid

24 October 2019 I Geneva - The TB diagnostic

Index test	Smear status	# Datasets (# specimens)	Sensitivity (95% Cl)	Specificity (95% CI)					
Head to Head comparisons (Abbott MTB and Xpert MTB/RIF)									
Abbott RealTime MTB	All	3 (685)	Range: 79%-100%	Range: 84%-97%					
Xpert MTB/RIF	All	3 (685)	Range: 82%-97%	Range: 90%-100%					
Head to head comparis	ons (FluoroType M	TB and Xpert MTB/	RIF)						
Hain FluoroType MTB	All	1 (296)	89 % (79-95)	60% (53-66)					
Xpert MTB/RIF	All	1 (296)	79% (67-87)	94% (90-97)					
		_							
BD Max MDR-TB	All	1 (575)	95% (92-98)	72% (66-77)					
Xpert MTB/RIF	All	1 (575)	95% (92-97)	73% (68-78)					
Head to head comparisons (cobas 6800/8800 MTB and Xpert MTB/RIF)									
Roche cobas MTB	All	1 (294)	95%(88-98)	97% (94-99)					
Xpert MTB/RIF	All	1 (294)	92% (84-96)	97% (94-99)					
Definitions OL Orafidance	Internet # more have af								

Definitions: CI: Confidence interval; # = number of

Centralized Assays – can we leverage economies of scale?

Kohli M et al, ERJ 2020 WHO Guidelines 2021 de Vos M, J Clin Microbiol 2021

Fast forward: Diversification of molecular testing

 \geq

Novel Samples Types for Molecular TB Detection

Stool PCR testing – a novel sample type in children

The problem

- I~ 1.1 million children with TB
- ~220,000 children died of TB (excluding children with HIV)
- No <u>effective</u> tests that can be performed on <u>easily accessible</u> samples

The solution – stool preprocessing

Diagnostic accuracy against MRS (6 sites in 4 countries)

	Ν	Sensitivity	Specificity			
		(95% CI)	(95% CI)			
Ultra/SOS	332	52.1 (38.3-65.5)	97.5 (94.9-98.9)			
Ultra/SPK	368	48.3 (35.9-60.8)	97.1 (94.5-98.5)			
Ultra/OSF	319	46.8 (33.4-60.8)	97.8 (95.1-99.1)			

Walters J et al, Clin Micro 2018; Banada PP et al, PLOSone 2016; Trial publication, in prep

ORAL SWABS – GOOD ENOUGH?

- Non-invasive, rapid sampling
- Simpler processing relative to sputum

Diagnostic accuracy (N=183 adults with presumed TB)

	Sputum Xpert Ultra reference standard	Microbiologic reference standard		
Sensitivity	77.8 (64.4-88.0)	72.4 (59.1-83.3)		
Specificity	100 (97.2-100)	100 (96.9-100)		

Tongue swab collection and processing

Semi-quantitative results: Swab vs sputum Xpert Ultra

		Tongue swab Xpert Ultra (double swab SR method)					
		Negative	Trace	Very low	Low	Medium	Total
	Negative	127	0	0	0	0	127
Sputum Xpert Ultraª	Trace	2	0	0	0	0	2
	Very low	6	0	0	0	0	6
	Low	6	3	0	3	0	12
	Medium	0	3	5	7	0	15
	High	0	1	4	14	2	21
	Total	141	7	9	24	2	183

Andama A et al, J Clin Microbiol 2022

IS IT POSSIBLE TO DO BETTER? OPTIMIZED REFERENCE ASSAY

Clinical Performance vs. Sputum Xpert Ultra						
Xpert Ultra high	100%	(13/13)				
Xpert Ultra medium	100%	(13/13)				
Xpert Ultra low	100%	(6/6)				
Xpert Ultra very low/trace	100%.	(1/1)				
Xpert Ultra negative	1.5%	(1/65)				
Overall Sens./Spec.	100%	/ 98.5%				

Breath aerosol sampling – promising early results

Breath sampling captures human aerosols that carry pathogens. After collection the pathogens' DNA or RNA is detected. (Adapted from Wang.Science.2021;373(6558):eabd9149)

- Ease of collection via non-invasive sampling methods (face mask)
- Link to infectiousness and transmission

	Initial sc	reening	6-week f	ollow-up					20-week	follow-up		
	Sputum sample	Face-mask sample	Sputum sample	Face-mask sample	Chest radiography	Bronchoalveolar lavage result	PET-CT	Outcome	Sputum sample	Face-mask sample*	PET-CT	Outcome
2	-	+	-	+	-	-	-	Treatment withheld and observed	-	-	-	Alternative diagnosis made
3	-	+	+	+	-	+	+	Tuberculosis treatment commenced	-	-	-	Completed treatment
7	-	+	+	+	-	+	+	Tuberculosis treatment commenced	-	-	-	Completed treatment
13	-	+	+	+	-	-	+	Tuberculosis treatment commenced	-	-	-	Completed treatment
17	-	+	+	+	-	-	+	Tuberculosis treatment commenced	-	-	-	Completed treatment

Williams CM et al, Lancet ID 2020

cfDNA (urine/blood) – Can it transform TB like it has cancer?

Fernandez Carballo BL et al, J Clin Microbiol 2016

Karius Test: A CLIA-certified cfDNA assay

Single blood test that detects cfDNA from >1000 microbial pathogens, including *M. tuberculosis*

Targeted NGS

Al technology

Limited use as a routine TB diagnostic

- -- Moderate sensitivity in smear-positive TB (40-50%)
- -- Poor sensitivity in smear-negative TB (0%)

Age group	TB status	Cell-free DNA detected by commercial- reporting threshold n/N (%) (95% CI)
Children		
	Sm + /Cx + (n = 4)	2/4 (50) (7–93)
	Sm - Cx + (n = 6)	0/6 (0) (0-46)
	Clinically diagnosed (Sm-/Cx-) ($n = 10$)	0/10 (0) (0-31)
	TB ruled out $(Sm - /Cx -)$ ($n = 10$)	0/10 (0) (0-31)
Adults		
	Sm + /Cx + (n = 5)	3/5 (60) (15–95)
	Sm - Cx + (n = 5)	0/5 (0) (0–52)

Pollock N et al, IJTLD 2021

Next-generation urine LAM assays: Fujifilm SILVAMP TB LAM

- High affinity monoclonal antibodies against *M. tuberculosis*-specific LAM epitopes
- Silver amplification step that increases the visibility of the test lines

IPD meta-analysis: banked urine from 5 prospective cohorts of PLHIV

Test (N=1595)	Sensitivity (N=724)	Specificity (N=871)
SILVAMP-LAM	70.7 (59.0-80.8)	90.8 (86.0-94.4)
LF-LAM	34.9 (19.5-50.9)	95.3 (87.7-98.8)
Difference	35.8	-4.4

CD4 stratum	Sensitivity	Specificity		
0-100	84.2 (71.4-91.4)	85 (75.8-91.7)		
101-200	60.6 (44.4-72.5)	89.6 (78.5-98.1)		
>200	44.0 (29.7-58.5)	97.0 (92.5-99.3)		

...and people living without HIV?

Diagnostic accuracy of three urine lipoarabinomannan (LAM) tuberculosis assays in HIV-negative outpatients

Test	Sensitivity (N=111)	Specificity (N=871)
LF-LAM	10.8	92.3
SILVAMP-LAM	53.2	98.9
EcILAM	66.7	98.1

Broger T et al, J Clin Invest 2021

NEXT STEPS: THIRD GENERATION OF URINE LAM TESTS

Summary

- Molecular testing should be current standard for diagnosis of pulmonary TB
 - Low complexity tests: Xpert MTB RIF, Xpert MTB RIF Ultra, Truenat
 - Moderate complexity tests: 4 endorsed by WHO to date
- Innovations in sample type and platforms for molecular testing anticipated over next few years
 - Oral swabs and mask-based aerosol
 - Cell-free DNA
 - POC platforms
- Urine LAM testing showing increasing promise, with third-generation assays expected to undergo accuracy trialing in 2023

Thank you!

