

The 2025 George W. Comstock Lecture

C. Robert Horsburgh, Jr. Boston University School of Public Health

George Wills Comstock, MD, 1915-2007

- Captain, US Public Health Service
- Professor, Johns Hopkins School of Public Health;
- Founder and Director, Training Center for Public Health Research and Prevention
- Accomplished Bassoonist

Objectives How did we get here? What do we know now that we didn't appreciate then? What are our options going forward? What might be the answer to this riddle?

- "Bacteriologial relapses...occur almost invariably with strains of tubercule bacilli fully sensitive to the drugs" (Lancet 1976;1:162-3)
- Response to retreatment with standard regimen: 68/73 (93%) were cured. (Lancet 1976;1:162-3)
- "When results in the presence of initial resistance are virtually as good as those in patients with initially sensitive bacilli, ... there seems to be no point in changing a regimen if initial resistance to isoniazid or streptomycin is found and therefore no point in looking for it." (Am Rev Respir Dis 1986;133:423-30)

But on the other hand...

- 1981 Four contacts of a patient with INH, SM and PAS resistance develop DR disease; "the potential of DR strains for causing disease in humans should not be underestimated"
- 1985 In Peru, the standard WHO recommended 8-month regimen 70% had a favorable outcome and 14% "abandoned"; 25% of previously treated patients had drug-resistant organisms.

Am J Epidemiol 1981;113:423-35 ARRD 1984;129:439-43 ARRD 1985;132:737-41

- "Unlikelihood of developing resistance to all three agents, an event that would occur in only 1 in 10¹⁵ bacilli" (ARRD, 1953)
- Based on *in vitro* mutation rates
- 2010: E. coli, under sublethal antibiotic pressure, develops resistance to antibiotics – even ones that were not administered!
- Increased DNA mutation, mediated by reactive oxygen species
 Mol Cell 2010;37:311-20

Poor absorption of one drug and not others

- H,R,Z,E better absorbed on an empty stomach
- Rifapentine exposures increased with fatty meal
- Differing penetration into caseum or cavities
 - Penetrate well: Rifamycins, Fluoroquinolones
 - Intermediate: BDQ, LZD, PZA, EMB
 - Poor: INH, PAS, KM, CF
- Differing activity vs. nonreplicating organisms
 - Active: Rifamycins, BDQ
 - Inactive: INH, Fluoroquinolones, PZA, PAS, CS

- In South Africa between 2015-2019, 8041 patients received BDQ in combination regimens
- 3.8% had baseline BDQ resistance
- Baseline BDQ resistance was associated with previous exposure to BDQ or CF
- Baseline BDQ resistance was also seen among persons exposed to patents with BDQ-R
- Resistance to BDQ developed during treatment in 3.5% of patients

Lancet ID 2022;22:496-505, BMC ID 2022;22:870

Three new Drugs?										
Discovery	2024 Glo Preclinical D	bal N	ew TB Di	rug Pipeline	1					
Lead Optimization	Early Stage Development	GMP / GLP Tox	. Phase 1	Phase 2	Phase 3	Regulatory Market Approvals				
Indazole sulfonamides Diarylthiazoles	<u>FIM-253</u> <u>TBD10 (MK-3854)</u>	GSK-839* OTB-658	TBD09 (MK-7762) GSK-286*	Telacebec* (Q203) Alpibectir (BVL-GSK098)*	Sudapyridine (WX-081)					
DprE1 Inhibitors Direct InhA Inhibitors Mtb energy	<u>CLB-073*</u> <u>SPR720*</u>		TBAJ-587 TBI-223	<u>TBAJ-876</u> Sanfetrinem		Bedaquiline*				
Gyrase Inhibitors Arylsulfonamides Inhibitors of MmpL3.	MPL-447* JSF-3285* CPZEN-45*		Macozinone* (PBTZ-169)	Delpazolid, Sutezolid, <u>Tedizolid</u>		Pretomanid*				
Translocase-1, ClpC1, ClpP1P2, PKS13, F-ATP synthase, RNAP	NTB-3119*			BTZ-043*						
Oxazolidinones DnaE1 / Nargenicin analogs	MBX-4888A (1810)* FNDR-20364*			TBA-7371* Quabodepistat (OPC-	Underline since Nov	= updates ember 2022				
*New chemical class. Known chemical classes for any indication are color coded: rifamycin, oxazolidinone, nitroimidazole, diarylquinoline, benzothiazinone, imidazopyridine amide, beta-lactam. *New Molecular Entities not yet approved, being developed for TB or only conditionally approved for TB.				167832*) <u>Ganfeborole</u> (GSK-656*/o	170) 🚷 WOR	WORKING GROUP				
Showing most advanced stage report http://www.newtbdrugs.org/pipelin Ongoing projects without a lead com	ed for each. Details for proje <u>e/clinical</u> pound identified: <u>http://ww</u>	cts listed can be fou	Pyrifazimine (TBI-166) ^{SQ-109*}	www.new Updated	www.newtbdrugs.org Updated: March 2024					

TBD	rugs in	Phase	1 & 2	Tri	als
Target	Class	Mode of Action	Candidates	Half-life	Penetrates Caseum?
ATP synthase	Diarylquinolone	Inhibits electron chain transport	Sudapyrine TBAJ-876 TBAJ-587 Telacebac	3-12 hrs	+
rRNA	Oxazolidinone	Inhibits protein synthesis	Delpazolid Sutezolid TBI-223 TBA-7371	2-26 hrs	+
Leucyl-tRNA synthetase (LeuRS)	Oxaborole	Inhibits protein synthesis	Ganfeborole	40 hrs	+
Decaprenylphosphoryl -β-D-ribose oxidase (DprE1)	Benzathiazinone	Inhibits cell wall formation	BTZ-043 Quabodepostat Macozinone	3-30 hrs	-
Transpeptidase	Beta-Lactam	Inhibits cell wall formation	Sanfetrinum	0.5 hrs	-
EthA monooxygenase	Mycolic Acid Synthesis inhibitor	Inhibits cell wall formation	Alpibectir/ETA	20 hrs	-
DNA Gyrase B	Aminobenzimidazole	Inhibits DNA replication	Fobrepodacin	?	?
CAMP	Cholesterol synthesis inhibitor	Inhibits cholesterol synthesis	GSK 286	>24 hrs	?
?	Rimophenazine	?	Pyrifazimine	45 hrs	?

Optimizing Adherence to Reduce Generation of DR

- Linezolid, Moxifloxacin poorly tolerated (especially by older patients)
- Bedaquiline prolongs QT and may raise the risk of Torsade de Pointes
- Future clinical trials need to focus on improved tolerability
- <u>This is even more important than treatment</u> <u>shortening!</u>

PLoS Med 2024;21(7):e1004438

- 25% of those with CXR+ for TB had a positive smear
- As much as half of transmitted TB can be attributed to such people
- Finding and treating MDR sooner will be important for decreasing transmission

Lancet ID 2024;24:726-36 PNAS 2022;119:e2211045119 eLife 2023;12:e82469

"...The art of epidemiologic reasoning is to draw sensible conclusions from imperfect data..."

Comstock GW. Am J Epidemiol 1990;131:206