Roadmap for today’s talk

• TB in people living with HIV (PLHIV)
 – Risk of LTBI→TB
 – Clinical manifestations
 – TB treatment (ART/TB medication interactions)
 – Immune reconstitution inflammatory syndrome (IRIS)
 – LTBI treatment

• TB and other immunosuppressive states
 – Solid organ (and hematopoietic stem cell) transplant Immunosuppressive/TB medication interactions
 – TB and biologics (TNF alpha inhibitors)
Global HIV/TB

10% new TB cases HIV+

Global TB/HIV epidemiology: over time

~10 % new cases HIV+ ~1/4 TB deaths HIV+

WHO 2018
Latent TB (LTBI) and active TB

HIV- 10% over lifetime

greatest risk in 1st 2 years

HIV+ 10% per year

- HIV kills TB-specific CD4 cells
- Impairs macrophage activation
- Fewer lung-homing CD4 cells
- Defective granuloma formation
- Loss of control of infection

Geldmacher, Curr Opin HIV AIDS, 2012
Although ART significantly decreases TB risk, still much higher than among HIV-
Challenges in TB treatment in HIV+

- Adherence
 - polypharmacy
- Side effects
 - overlapping side effects of anti-TB and ART
- Immune reconstitution inflammatory syndrome (IRIS)
- Drug-drug interactions

What to start, and when to start?

TB treatment in HIV+

<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>Duration</th>
<th>Interval</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INH, RIF, PZA, EMB</td>
<td>2 months</td>
<td>Daily</td>
<td>Recommended</td>
</tr>
<tr>
<td>Continuation phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INH/RIF</td>
<td>4 months</td>
<td>Daily</td>
<td>Recommended</td>
</tr>
<tr>
<td>INH/RIF</td>
<td>4 months</td>
<td>3 x week</td>
<td>Alternative</td>
</tr>
<tr>
<td>INH/RIF</td>
<td>4 months</td>
<td>Twice weekly</td>
<td>Not recommended for HIV+</td>
</tr>
<tr>
<td>INH/RPT</td>
<td>4 months</td>
<td>Once weekly</td>
<td>Contraindicated</td>
</tr>
</tbody>
</table>

For HIV+ both initial phase and continuous phase are given daily
TB treatment in HIV+

- **Anti-TB regimen generally the same for non-HIV**
 - Initial phase: INH, RIF, PZA, EMB x 2 months
 - Continuation phase: INH, RIF x 4 months
 - Extended to 7 months if initial CXR + cavitation & Cx + at end of 2 months of initial phase

- **Important exceptions for HIV+:**
 - Initial phase: INH, RIF, PZA, EMB given daily
 - Continuation phase: INH, RIF given daily (or 3 x week)
 - If no ART during TB tx: extend to 7 months
 - Culture-negative pulm TB:
 - 6 months total treatment (vs. 4 months HIV-)

Basic Principles in ART and TB treatment

- **Rifamycin-based TB treatment is cornerstone of effective TB treatment**

- **Most drug-drug interactions due to Rifampin**
 - Potent inducer of P450 enzyme 3A
 - Sometimes requires ART dose adjust (typically ↑ dose)
 - **Rifabutin less potent inducer**
 - Sometimes requires rifabutin dose adjust (↑ or ↓ dose)
 - **Important:** if ART dc’d, rifabutin may be subtherapeutic
TB treatment duration in HIV+

- **Culture-negative pulmonary TB**
 - 6 months total treatment (vs. 4 months HIV-)

- **Extra-pulmonary (same as HIV-)**
 - 6-9 months

- **Meningitis (same as HIV-)**
 - 9-12 months

- **Adjunctive corticosteroids***
 - CNS, pericardium involvement
 - *New data to suggest benefit in preventing IRIS

Timing of ART and TB treatment

- **ART is recommended for all HIV+ with TB**

- For ART-naïve
 - CD4 < 50 start ART within 2 weeks
 - CD4 ≥ 50 start by 8-12 weeks

- Exception: TB meningitis
 - start > 8 weeks (to reduce risk of IRIS)

- If already on ART, continue ART
 - May require medication adjustment
Important ART considerations with TB treatment

- **Efavirenz preferred ART treatment (still)**
 - RIF decrease EFV levels (**dose adjustment not required**)
- Alternatives: **Integrase inhibitors** (Raltegravir or Dolutegravir)
 - RIF decrease RAL and DTG levels (**in general need to increase INSTI dose**)
- Alternatives: **Protease inhibitors**
 - Rifabutin preferred over rifampin
- Tenofovir disoproxil fumarate (TDF) preferred over tenofovir alafenamide (TAF) (**for now**)

DHHS 2017
ATS, CDC, IDSA CID 2016

See additional slides for specific ART regimens and TB treatment issues

Immune Reconstitution Inflammatory Syndrome: IRIS

- IRIS: collection of inflammatory disorders
 - Paradoxical worsening of preexisting infectious processes
 - Assoc w/ immune recovery following ART initiation
 - Risk Factors: ↓ CD4 and ↑ VL pre- ART, short time between TB tx and ART initiation, **but TB IRIS can occur at CD4 >200**
Immune Reconstitution Inflammatory Syndrome: IRIS

- IRIS: collection of inflammatory disorders
 - Paradoxical worsening of preexisting infectious processes
 - Assoc w/ immune recovery following ART initiation
 - Risk Factors: ↓ CD4 and ↑ VL pre- ART, short time between TB tx and ART initiation, but TB IRIS can occur at CD4 >200

TB IRIS: Clinical manifestations

- **Pulmonary TB**
 - Sx: fever, malaise, weight loss, and worsening resp sx
 - Worsening CXR: new parenchymal opacities and progressive ↑ intrathoracic lymph node

- **Extrapulmonary TB**
 - Worsening lymphadenitis, new pleural effusions, ↑ intracranial tuberculomas, worsening of meningitis or radiculomyelopathy
 - “cold” abscesses
TB IRIS: Treatment

Continue ART unless life-threatening

- **Steroids**
 - RCT 4 wks prednisone vs. placebo for TB IRIS tx
 - ↓ symptoms, improved CXR, ↓ hospitalization

- **NSAIDS**

TB IRIS: Prevention?

- **PredART**: Empiric prednisone during 1st 4 wks of ART ↓ risk of paradoxical TB-IRIS

A Cumulative incidence of TB-Associated IRIS at 12 Weeks

<table>
<thead>
<tr>
<th></th>
<th>Prednisone</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with TB-Associated IRIS (%)</td>
<td>18/120 (15.0%)</td>
<td>50/130 (46.7%)</td>
</tr>
</tbody>
</table>

Relative risk: 0.37 (95% CI: 0.31 - 0.46)

P=0.00 by chi-square test

B Cumulative incidence of TB-Associated IRIS over 54 Days

<table>
<thead>
<tr>
<th></th>
<th>Prednisone</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. at Risk</td>
<td>119</td>
<td>87</td>
</tr>
<tr>
<td>Prednisone</td>
<td>119</td>
<td>87</td>
</tr>
<tr>
<td>Placebo</td>
<td>119</td>
<td>87</td>
</tr>
</tbody>
</table>

Hazard ratio: 0.61 (95% CI: 0.41 - 0.92)

P=0.02
LTBI treatment in HIV+

<table>
<thead>
<tr>
<th>Drug(s)</th>
<th>Duration</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoniazid</td>
<td>9 months</td>
<td>Recommended</td>
</tr>
<tr>
<td>Isoniazid + Rifapentine</td>
<td>3 months</td>
<td>OK if NO ART or EFV or RAL-based ART. Drug interactions with TAF</td>
</tr>
<tr>
<td>Rifampin</td>
<td>4 months</td>
<td>Drug interactions
May required dose adjustment</td>
</tr>
<tr>
<td>Rifabutin</td>
<td>4 months</td>
<td>Drug interactions
May required dose adjustment</td>
</tr>
<tr>
<td>Rifampin + Pyrazinamide</td>
<td>2 months</td>
<td>Contraindicated</td>
</tr>
</tbody>
</table>

Recent trials:
- 1 INH/RPT: not inferior to 9 INH *Swindells NEJM 2019*
- INH pregnancy vs. postpartum: similar maternal safety, higher risk of fetal and pregnancy outcomes *Gupta CROI 2018 IMPAACT 1078*

Shifting gears

https://www.bicycling.com/training/a20004201/how-to-shift/
TB and Solid Organ Transplant (SOT)

- TB risk 20-74 x higher than general pop
- Incidence in low prevalence regions 0.3-6.5%

Higher mortality 6-22% (vs <5% for TB in general US)

TB and SOT: things to consider

- Reactivation of LTBI in setting of immunosuppression
 - Recurrence of previously treated TB
- Drug-drug interactions
- Baseline organ dysfunction
- Donor derived infections
 - Unrecognized active TB
 - Reactivation of LTBI in the graft
TB and SOT: risk factors

- Transplant-related immunosuppression
- Standard TB risk factors
- Underlying medical condition

| Risk factor | Immunosuppressive therapy
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OKT3 or anti-T lymphocyte antibodies (III)</td>
</tr>
<tr>
<td>Intensification of immunosuppression associated with graft rejection (III)</td>
</tr>
<tr>
<td>Cyclosporine A vs. azathioprine plus prednisone (II)</td>
</tr>
<tr>
<td>Mycophenolate mofetil and tacrolimus vs. azathioprine, cyclosporine, and prednisone (III)</td>
</tr>
<tr>
<td>History of exposure to Mycobacterium tuberculosis</td>
</tr>
<tr>
<td>Positive PPD test result (III)</td>
</tr>
<tr>
<td>Radiological evidence of previous untreated TB (III)</td>
</tr>
<tr>
<td>Clinical condition</td>
</tr>
<tr>
<td>Chronic renal insufficiency or hemodialysis (kidney transplantation; II)</td>
</tr>
<tr>
<td>Diabetes mellitus (III)</td>
</tr>
<tr>
<td>Hepatitis C virus infection (kidney transplantation; III)</td>
</tr>
<tr>
<td>Chronic liver disease (III)</td>
</tr>
<tr>
<td>Other coexisting infections: profound mycoses, cytomegalovirus, or Pneumocystis jiroveci or Nocardia pneumonia (III)</td>
</tr>
</tbody>
</table>

TB and SOT: clinical manifestations

- Atypical presentations
 - Non specific sx (fever, weight loss, night sweats)
 - Extrapulmonary/disseminated more common
 - Classic upper lobe infiltrate / cavities less likely

- Diagnostic delays
TB and SOT: screening

- **Recipient prior to transplant**
 - TST or IGRA
 - However many SOT recipients who develop TB had neg TST/IGRA prior to transplant
 - Chest imaging (CXR, +/-CT)
 - Epidemiologic risk assessment

- **Donors**
 - Living donors - LTBI screening (and treatment)
 - Deceased donors - Moderate to high TB risk: imaging (consider CT) + AFB smear (+NAAT/Culture)
 - donor with untreated LTBI, recent exposure, radiographic evidence of untreated TB -> LTBI treatment for recipient

LTBI and SOT: treatment

- **Timing: pre- or post-transplant?**

Table 3. Factors Affecting Timing of Latent Tuberculosis Treatment Among Solid Organ Transplant Candidates and Recipients

<table>
<thead>
<tr>
<th>Factor</th>
<th>Timing</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pretransplant</td>
<td>Posttransplant</td>
</tr>
<tr>
<td>Advantages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Possibility higher efficacy in absence of concurrent immunosuppression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fewer drug-drug interactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower medication/pill burden with corresponding better anticipated adherence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generally well tolerated, even in liver transplant candidates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disadvantages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potentially insufficient calendar time to complete therapy due to unpredictable timing of transplant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difficulties in differentiating drug toxicity from signs/symptoms of underlying organ disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug-induced liver injury could be fatal with preexisting advanced liver disease in liver transplant candidates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potentially lower efficacy in setting of concurrent immunosuppression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional pill burden to an already complex medication regimen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potentially severe drug interactions with immunosuppressants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher reported rate of drug-induced liver injury and discontinuation in liver graft recipients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any elevation in liver function tests creates need for extensive evaluation including invasive procedures (eg, liver biopsy to rule out rejection)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LTBI and SOT: treatment

• Choice of regimen

<table>
<thead>
<tr>
<th>INH</th>
<th>Best studied well tolerated pre-liver txp</th>
<th>Longer duration ↑ Hepatotoxicity post-txp</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIF</td>
<td>Shorter duration</td>
<td>↑ P450 inducer ↓ immunosuppressive agents; rejection allograft loss</td>
</tr>
<tr>
<td>INH/RPT</td>
<td>Shorter duration</td>
<td>Doesn’t avoid INH adverse effects / rifamycin drug interactions</td>
</tr>
</tbody>
</table>

• Need for further study: RBT, FLQ

LTBI/TB treatment and SOT: important drug interactions

- **Rifampicin reduces levels of many immunosuppressive agents**
 - Corticosteroids
 - Calcineurin inhibitors: tacrolimus, cyclosporine
 - mTORs (mammalian target of rapamycins): rapamycin (sirolimus), everolimus

- **Reduced levels immunosuppressant levels increase risk of graft rejection**

- **Need to increase dose of calcineurin inhibitors 3-5x, closely monitor levels**
TB and Hematopoietic Stem Cell Transplant (HSCT)

- TB risk 10-40x higher than general population
 - ~ 10X less common than among SOT (due to transient immunosuppression)
- Highest risk among allogenic transplants
 - Primarily due to LTBI reactivation
- Donor-derived infections appear insignificant
- Treatment for LTBI prior to conditioning therapy preferred
- Recommendations for screening and treatment of LTBI similar to SOT
TB and Biologics

| TNF alpha inhibitors | Etanercept (soluble p75 receptor)
| | Infliximab, adalimumab, golimumab, certolizumab (monoclonal antibodies) |
| II-1 inhibitors | Anakinra |
| B-cell depletion | Rituximab
| | Anti-CD20 |
| T-cell co-stimulation blockade | Abatacept |

TNF alpha and TB

A: Phagocytosis of bacilli
B: TNFα release and autocrine stimulation
C: Cytokine and chemokine release
- Attraction and stimulation of CD4 and CD8 lymphocytes
- Increased T-cell adhesion, antigen presentation
- Proliferation and recruitment of T and B cells
D: Activated T cells release interferon γ, further activating macrophages
- Increased antigen presentation
- Intracellular killing of bacilli
- Macrophage apoptosis, granuloma formation

TNF alpha blockade increases TB risk

Slide courtesy of Elizabeth Gilliams
Gardam Lancet Infect Dis. 2003
TB risk and TNF alpha inhibitors

Incident TB
Nelson-Aalen plot

Drug	Registration (entry to study)	1 year (365 days)	2 years (730 days)	3 years (1095 days)	4 years (1460 days)
DMARD | 3252 | 2652 | 1839 | 742 | 213
ETA | 3913 | 3474 | 3051 | 2363 | 1020
INF | 3295 | 2694 | 1918 | 1392 | 918
ADA | 3504 | 2457 | 1531 | 729 | 247

Slide courtesy of Kevin Winthrop

Winthrop Nature Pract Rheum (in press)
Winthrop Ann Rheum Disease 2013
TB risk and TNF alpha inhibitors: Risks are different by agent

- Infliximab and adalimumab suppress IFNγ production
- Depletion of CD8 cells that aid in killing intracellular TB
- Impaired granuloma formation
 - Antibodies > receptor

LTBI treatment and TNF alpha inhibitors

- **Screen for LTBI prior to anti-TNFα initiation**
 - Ideally receive 1 month LTBI treatment prior to anti-TNFα

- Holding anti-TNFα can be associated with IRIS-like phenomenon
 - Anti-TNFα can be restarted within few months of TB tx initiation
HIV/TB: Take home points

- HIV significantly increase risk of TB
 - ↑ atypical presentations of PTB, EPTB and disseminated TB

- TB treatment similar to non-HIV, but...
 - Daily Initial phase w/ RIPE, at least 3 x week Maintenance w/ IR

- Rifamycin-based anti-TB therapy is key
 - May require ART dose adjustment

- Important to monitor for drug-drug interactions and side effects

- IRIS typically managed w/ NSAIDS, steroids if severe
 - Concerns for TB-IRIS should not delay HAART initiation

TB and other immunosuppressive states: Take home points

- Important to screen for LTBI in SOT/HSCT recipients
 - Ideally before transplant
 - TB risk primarily due to LTBI reactivation, but can be donor derived in SOT

- Rifampicin reduces levels of many immunosuppressant agents used in SOT/HSCT
 - Increases risk of graft rejection
 - Often requires increased dose of immunosuppressants

- TNF alpha inhibitors significantly increase risk of TB
 - Ideally initiate LTBI treatment before anti-TNFα initiation
 - Stopping anti-TNFα assoc with IRIS, can restart within few months of TB tx
Resources
https://www.hiv.uw.edu/go/co-occurring-conditions/latent-tuberculosis/core-concept/all

Acknowledgements
Robert Harrington
David Horne
Masa Narita
Bijan Ghassemieh
Kevin Winthrop
Elizabeth Gilliams
Additional references

ART and RIF recommended dose adjustments

<table>
<thead>
<tr>
<th>ARV</th>
<th>ARV dose change</th>
<th>RIF dose change</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNRTIs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efavirenz</td>
<td>None; some ↑800mg if >50kg</td>
<td>No change</td>
<td>Preferred Regimen (still)</td>
</tr>
<tr>
<td>Nevirapine</td>
<td>↑lead-in dose 200 mg twice daily, continue as maintenance dose</td>
<td>No change</td>
<td>Avoid lead-in 200mg once daily, assoc w/ virologic failure. Consider therapeutic drug monitoring. Rarely used in US</td>
</tr>
<tr>
<td>Rilpivirine Etravirine</td>
<td>Contraindicated</td>
<td></td>
<td>Significant decrease in Rilpivirine</td>
</tr>
<tr>
<td>NRTIs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenofovir disoproxil fumarate (TDF)</td>
<td>None</td>
<td>None</td>
<td>Preferred</td>
</tr>
<tr>
<td>Tenofovir alafenamide (TAF)</td>
<td>Unknown</td>
<td>TAF concentration decreased in healthy volunteers (but intracellular concentrations still higher than TDF) CROI 2018</td>
<td></td>
</tr>
</tbody>
</table>

RIF decreases NNRTI (and some NRTI) levels

ART and RIF recommended dose adjustments (cont.)

<table>
<thead>
<tr>
<th>Integrase inhibitors</th>
<th>ARV dose change</th>
<th>RIF dose change</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raltegravir</td>
<td>↑ Raltegravir to 800 mg twice daily</td>
<td>No change</td>
<td>Raltegravir trough concentrations still decreased, follow VL carefully</td>
</tr>
<tr>
<td>Dolutegravir</td>
<td>↑ Dolutegravir to 50 mg twice daily</td>
<td>No change</td>
<td>follow VL carefully</td>
</tr>
<tr>
<td>Bictegravir</td>
<td>Bictegravir should not be used together</td>
<td>Decrease in Bictegravir even when given BID (Custodia, CROI 2018)</td>
<td></td>
</tr>
<tr>
<td>Elvitegravir, cobicistat, TDF or TAF, and emtricitabine (Stribild or Genvoya)</td>
<td>Stribild or Genvoya and rifampin should not be used together</td>
<td>Marked decrease in elvitegravir and cobicistat concentrations predicted based on metabolic pathways of these drugs</td>
<td></td>
</tr>
<tr>
<td>CCR-5 receptor antagonists</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maraviroc</td>
<td>↑ Maraviroc to 600 mg twice-daily</td>
<td>No change</td>
<td>Use with caution, as there is no reported clinical experience with increased dose of maraviroc with rifampin</td>
</tr>
</tbody>
</table>

RIF decreases INSTI levels
ART and RIF recommended dose adjustments (cont.)

<table>
<thead>
<tr>
<th>ARV dose change</th>
<th>RIF dose change</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protease inhibitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lopinavir/ritonavir (Kaletra™)</td>
<td>Lopinavir 800 mg plus ritonavir 200 mg twice daily</td>
<td>No change</td>
</tr>
<tr>
<td></td>
<td>(double dose)</td>
<td></td>
</tr>
<tr>
<td>“Super-boosted” lopinavir/ritonavir (Kaletra™)</td>
<td>Lopinavir 400 mg plus ritonavir 400 mg twice daily</td>
<td>No change</td>
</tr>
<tr>
<td>(super boosting)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atazanavir (single agent or ritonavir boosted)</td>
<td>Contraindicated</td>
<td></td>
</tr>
<tr>
<td>Darunavir/r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fosamprenavir/r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saquinavir/r</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For PIs RFB preferred

ART and RFB recommended dose adjustments

<table>
<thead>
<tr>
<th>ARV</th>
<th>ARV dose change</th>
<th>RFB dose change</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNRTIs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efavirenz</td>
<td>No change</td>
<td>↑ 600 mg (daily or thrice-weekly)</td>
<td>RIF preferred</td>
</tr>
<tr>
<td>Nevirapine</td>
<td>No change</td>
<td>No change</td>
<td></td>
</tr>
<tr>
<td>Etravirine</td>
<td>No change</td>
<td>No change</td>
<td>Conc of both decreased</td>
</tr>
<tr>
<td>Rilpivirine</td>
<td>Contraindicated</td>
<td></td>
<td>Significant decrease in Rilpivirine</td>
</tr>
</tbody>
</table>

Protease inhibitors

<table>
<thead>
<tr>
<th>ARV</th>
<th>ARV dose change</th>
<th>RFB dose change</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atazanavir (single agent or ritonavir boosted)</td>
<td>No change</td>
<td>↓ 150 mg daily</td>
<td>No pub clinical experience</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Monitor closely for potential rifabutin toxicity – uveitis, hepatotoxicity, and neutropenia</td>
</tr>
<tr>
<td>Darunavir/r</td>
<td>No change</td>
<td>↓ 150 mg daily</td>
<td>Monitor closely for potential rifabutin toxicity – uveitis, hepatotoxicity, and neutropenia</td>
</tr>
<tr>
<td>Fosamprenavir/r</td>
<td>Saquinavir/r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lopinavir/ritonavir (Kaletra™)</td>
<td>No change</td>
<td>↓ 150 mg daily</td>
<td>Hepatotoxicity in healthy volunteers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Better-tolerated among HIV+ already on LPV/r</td>
</tr>
</tbody>
</table>

RFB levels decreased with EFV, increased with PIs
ART and RFB recommended dose adjustments (cont.)

<table>
<thead>
<tr>
<th></th>
<th>ARV dose change</th>
<th>RFB dose change</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrase inhibitors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raltegravir</td>
<td>No change</td>
<td>No change</td>
<td>↑ RAL conc</td>
</tr>
<tr>
<td>Dolutegravir</td>
<td>No change</td>
<td>No change</td>
<td>↑ DOL conc</td>
</tr>
<tr>
<td>Elvitegravir, cobicistat, tenofovir, and emtricitabine (Stribild™)</td>
<td>Stribild (or Genwoya) and rifabutin should not be used together</td>
<td>Marked ↓ elvitegravir, cobicistat conc Marked ↑ rifabutin</td>
<td></td>
</tr>
<tr>
<td>CCR-5 receptor antagonists</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maraviroc</td>
<td>No change</td>
<td>No change</td>
<td>No clinical experience; a significant interaction is unlikely, but this has not yet been studied</td>
</tr>
</tbody>
</table>

INSTI levels increased with RFB

DHHS 2017
CDC 2013
ATS, CDC, IDSA CID 2016