Implementation Science for Quality Improvement

Priya B. Shete, MD, MPH
Assistant Professor of Medicine and Epidemiology, University of California San Francisco
2021 Pacific Islands Tuberculosis Controllers Association Conference
November 16, 2021
Learning Objectives

Participants will be able to:

• Understand key principles of implementation science relevant to the improvement of TB services and care

• Cite examples of their application to TB services and care
 • Case Study: Implementation of Xpert MTB/RIF testing in Uganda

• Identify opportunities where implementation science can be harnessed to improve TB knowledge and care in their own settings
Implementation Science

- Study of **methods or strategies to promote** the systematic uptake of proven interventions into routine clinical practice. In this context, it includes the study of **influences** on the **behavior** of patients, providers, and organizations in either healthcare or population settings.

 --- *Implementation Science Journal*

- Study of **methods to promote** the integration of research findings and evidence into healthcare **policy and practice**. It seeks to understand the **behavior** of healthcare professionals and other stakeholders as a key variable in the sustainable uptake, adoption, and implementation of evidence-based interventions.

 --- *NIH Fogarty International Center*

- Study of processes used in the implementation of initiatives and **contextual factors** that affect these initiatives. The basic intent is to understand not only what is and is not working, but **how and why** implementation is going right or wrong, and testing **approaches** to improve it.

 --- *World Health Organization*
Common themes across definitions

- Implementation science involves
 - Understanding behavior
 - Developing strategies to change behavior
 - Engaging stakeholders

Increase speed, quantity and quality of evidence uptake
Logic Model
Use of theory/frameworks in implementation science

- “Theory without empirical research is empty; empirical research without theory is blind” -- Immanuel Kant

1. Identify determinants of behavioral/environmental risk factors
2. Create a causal model of the problem
3. Specify determinants being targeted for change
4. Select intervention methods to match targets
5. Inform evaluation of implementation strategy
Learning Objectives

Participants will be able to:

• Understand key principles of implementation science relevant to the improvement of TB services and care

• Cite examples of their application to TB services and care
 • Case Study: Implementation of Xpert MTB/RIF testing in Uganda

• Identify opportunities where implementation science can be harnessed to improve TB knowledge and care in their own settings
Uganda Context

• Among global leaders in Xpert scale-up
 • >200 GeneXpert devices (hub-and-spoke model)
 • >400,000 Xpert MTB/RIF cartridges

• Unresolved questions
 • How well are Xpert referral networks functioning?
 • What is the quality of TB diagnostic care within Xpert referral networks?
 • What policy changes and co-interventions can further enhance Xpert implementation?
Xpert Performance Evaluation to facilitate Linkage to TB care (XPEL TB)

AIMS

• To quantify gaps in TB diagnosis at health centers linked to Xpert testing sites

• To identify modifiable barriers to high-quality TB diagnostic services
 • Provider-level
 • Patient-level
 • Health system-level

• To develop and test a theory-driven intervention to improve the quality of TB diagnostic services
Aim 1: “Define quality gap”

• Study setting
 • 24 health centers (spokes) linked to 16 Xpert testing sites (hubs)
 • Selected based on 2015 NTLP case notification data

• Study design: Prospective cohort study

• Participants: All adults undergoing TB evaluation
Methods

• Data collection from routine data sources
 • Data sources: Presumptive TB register, TB laboratory register, Xpert requisition forms, TB treatment register

• GxAlert server data used to ensure complete capture of Xpert results
Quality of TB diagnostic evaluation

<table>
<thead>
<tr>
<th>Indicator 1: Proportion referred for sputum-based TB testing</th>
<th>%</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicator 2: Proportion completing recommended TB testing (if referred)</td>
<td>55%</td>
<td>13 – 80%</td>
</tr>
<tr>
<td>Indicator 3: Proportion treated within 14 days (if smear- or Xpert-positive)</td>
<td>73%</td>
<td>60 – 100%</td>
</tr>
<tr>
<td>Indicator 4: Cumulative probability of being diagnosed and treated</td>
<td>33%</td>
<td>4 – 77%</td>
</tr>
</tbody>
</table>

Davis JL, Katamba A et al. AJRCCM. 2011
Farr K, Nalugwa T et al. JC TUBE 2019
Utilization of Xpert testing

- 17% (365/2091) of patients referred for Xpert testing
 - 34% (267/779) of HIV-positive adults
 - 7% (98/1312) of HIV-negative adults

- <5% (14/365) of patients referred for Xpert as first-line test

- <50% (20/48) of Xpert-positive patients initiated treatment within 14 days
 - Median time-to-treatment: 7 days (IQR 1 – 17)

High coverage of Xpert testing services ≠ High quality care

Farr K, Nalugwa T et al. JC TUBE 2019
Aim 2: “Understand quality gap”

- Conceptual Model: Theory of Planned Behavior

Patient Factors
- Time/distance to access care
- Cost to access care

Health System Factors
- Physical Resources
- Material Resources

Intention to Follow ISTC

ISTC Adherence

Case Detection and Treatment

ISTC, International Standards for TB Care
Methods

• Data collection
 – Key informant interviews (N=22 staff at 6 health centers)
 – Field observation
 – Surveys (N=64 presumed TB patients at 6 health centers)

• Analysis
 – Qualitative data
 • Transcribe interviews and field notes
 • Apply standard coding scheme to identify recurring themes/sub-themes
 – Quantitative data: descriptive statistics
Aim 2 Summary: Barriers to high-quality TB evaluation

<table>
<thead>
<tr>
<th>PRECEDE framework</th>
<th>Recurring themes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predisposing factors</td>
<td></td>
</tr>
<tr>
<td>(Knowledge, attitudes, beliefs, intention)</td>
<td>• Time and resource constraints (i.e., high workload) → low self-efficacy
• Belief that TB evaluation is not urgent</td>
</tr>
<tr>
<td>Enabling Factors</td>
<td></td>
</tr>
<tr>
<td>(Factors that if addressed make it easier to initiate the desired behavior)</td>
<td>• Failure of patients to return after initial visit (due to time and costs)
• Inconsistent/delayed specimen transport to Xpert testing sites
• Inability to track and follow-up patients
“When they have a cough for more than 2 weeks they are sent to the lab. But the problem is they get the first sample and sometimes, actually most times they don’t bring the second sample.”</td>
</tr>
<tr>
<td>Reinforcing Factors</td>
<td></td>
</tr>
<tr>
<td>(Factors that if addressed make it easier to continue the desired behavior)</td>
<td>• Lack of communication and coordination among staff
• Insufficient oversight from NTP
“...Actually at times we have met but we don’t meet [regularly], only when we realize there is a problem that’s when we communicate and say why is this happening, then we try to rectify.”</td>
</tr>
</tbody>
</table>

Aim 3: “Improve quality gap”

Intervention design process:

- Evidence review
- Stakeholder consultation
- Feasibility

1. Prioritize barriers
2. Select interventions
3. Specify how interventions delivered
Theory-informed intervention components: XPEL TB strategy

1. **Onsite Xpert testing using GeneXpert Edge at health clinic**
 - Reduce workload, increase speed and accuracy of testing

2. **Clinic process redesign to facilitate same day testing and treatment of TB**
 - Address lack of urgency and failure of patients to return

3. **Regular feedback of quality metrics to health facility staff**
 - Improve communication, coordination and oversight
XPEL TB TRIAL DESIGN AND POPULATION

- **Objective:** To evaluate the effectiveness, implementation and costs/cost-effectiveness of the XPEL TB strategy at community health centers

- **Design:** Ultra-pragmatic, cluster-randomized, hybrid effectiveness implementation (Type 2) trial
 - 20 community health centers in Uganda (10 sites randomized to each arm)
 - Intervention arm: XPEL TB strategy
 - Control arm: Routine care (onsite microscopy + referral-based Xpert testing)

- **Population:** All adults evaluated for pulmonary TB from Oct 2018 to Mar 2020
 - Patients with RIF resistance excluded from analysis

Reza T, Nalugwa T et al. Implement Sci 2020
XPEL TB TRIAL PROCEDURES

• Public randomization ceremony (restricted + stratified randomization using 2017 TB data)

• Waiver of informed consent to extract patient demographic and clinical data from photos of routine TB registers

• Minimal contact with health centers: initial training visit + quarterly site visits to resolve data queries and conduct nested sub-studies

Reza T, Nalugwa T et al. Implement Sci 2020
RESULTS: PRIMARY OUTCOME

- Cluster-level analysis using negative binomial regression models

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Intervention</th>
<th>Control</th>
<th>Unadjusted GMR</th>
<th>Adjusted GMR*</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number treated for confirmed TB within 14 days</td>
<td>340</td>
<td>218</td>
<td>1.56 (1.16-2.09)</td>
<td>1.56 (1.21-2.02)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

* Adjusted for: Randomization strata, number of patients treated for confirmed TB within 14 days in 12-month pre-trial period

Katamba A et al. Union Lung Health Conference 2020
RESULTS: SECONDARY OUTCOMES

- Tested per national guidelines

Same-day outcomes
- Diagnosed with confirmed TB
- Treated for confirmed TB

14-day outcomes
- Diagnosed with confirmed TB
- Treated for confirmed TB

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Adjusted Geometric Mean Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosed with confirmed TB</td>
<td>1.85 (1.22, 2.83)</td>
</tr>
<tr>
<td>Treated for confirmed TB</td>
<td>1.89 (1.41, 2.54)</td>
</tr>
<tr>
<td>Treated for confirmed TB</td>
<td>2.38 (1.58, 3.58)</td>
</tr>
<tr>
<td>Treated for confirmed TB</td>
<td>1.90 (1.22, 2.96)</td>
</tr>
<tr>
<td>Treated for confirmed TB</td>
<td>1.27 (0.97, 1.66)</td>
</tr>
<tr>
<td>Treated for confirmed TB</td>
<td>1.54 (1.19, 1.99)</td>
</tr>
<tr>
<td>Treated for confirmed TB</td>
<td>1.46 (1.02, 2.09)</td>
</tr>
</tbody>
</table>

Graph showing adjusted geometric mean ratios for different outcomes.
CONCLUSIONS

• Scale-up of novel diagnostics alone is unlikely to significantly increase case detection or improve patient outcomes

• The XPEL TB strategy (onsite Xpert testing + implementation supports)
 • increased 14-day TB diagnosis and treatment by 56%
 • improved quality metrics at each step along the TB diagnostic evaluation cascade of care

• Analysis of implementation and health economic outcomes is ongoing

• National TB programs should consider scaling-up decentralized Xpert testing to close the case detection gap

• Implementation science-based methods are useful for designing and evaluating health system interventions to improve quality of care
Acknowledgments

Uganda TB Implementation Research Consortium: XPEL TB study
Alex Kityamuweetsi, Denis Oyuku, Joseph Ggita, Talemwa Nalugwa, Chris Ojok, Mariam Nantale, Achilles Katamba. Not shown: Irene Ayakaka, Sara Nabwire, Priscilla Haguma, Emma Ochom, Diana Babirye, Annette Sany

Funding
NIH/NIAID R21AI096158 (Cattamanchi)
MRC/Wellcome Trust/DFID Pilot Grant (Moore)
NIH/NHLBI R01HL130192 (Cattamanchi)
UCSF CFAR Pilot Award (Shete)

Tania Reza
Katherine Farr
Adithya Cattamanchi
Margaret Handley
Sara Ackerman
Priya Shete

Stavia Turyahabwe
Frank Mugabe
Moses Joloba
Abdunoor Nyombi
Diana Nadunga
Faith Alikoba
Jane Babirye
Godfrey Ekuka
Nelson Mody
Marvin Mugisa

J. Lucian Davis

David Dowdy
Hojoon Sohn

David Moore
Katherine Fielding